mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
839 lines
32 KiB
Python
839 lines
32 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from __future__ import annotations
|
|
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from inspect import signature
|
|
from types import UnionType
|
|
from typing import TYPE_CHECKING, Any, Callable, ClassVar, Iterable, Literal, Optional, Type, TypeVar, Union
|
|
|
|
import semver
|
|
from pydantic import BaseModel, ConfigDict, Field, RootModel, TypeAdapter, create_model
|
|
from pydantic.fields import _Unset
|
|
from pydantic_core import PydanticUndefined
|
|
|
|
from invokeai.app.services.config.config_default import InvokeAIAppConfig
|
|
from invokeai.app.services.workflow_records.workflow_records_common import WorkflowField
|
|
from invokeai.app.util.misc import uuid_string
|
|
|
|
if TYPE_CHECKING:
|
|
from ..services.invocation_services import InvocationServices
|
|
|
|
|
|
class InvalidVersionError(ValueError):
|
|
pass
|
|
|
|
|
|
class FieldDescriptions:
|
|
denoising_start = "When to start denoising, expressed a percentage of total steps"
|
|
denoising_end = "When to stop denoising, expressed a percentage of total steps"
|
|
cfg_scale = "Classifier-Free Guidance scale"
|
|
scheduler = "Scheduler to use during inference"
|
|
positive_cond = "Positive conditioning tensor"
|
|
negative_cond = "Negative conditioning tensor"
|
|
noise = "Noise tensor"
|
|
clip = "CLIP (tokenizer, text encoder, LoRAs) and skipped layer count"
|
|
unet = "UNet (scheduler, LoRAs)"
|
|
vae = "VAE"
|
|
cond = "Conditioning tensor"
|
|
controlnet_model = "ControlNet model to load"
|
|
vae_model = "VAE model to load"
|
|
lora_model = "LoRA model to load"
|
|
main_model = "Main model (UNet, VAE, CLIP) to load"
|
|
sdxl_main_model = "SDXL Main model (UNet, VAE, CLIP1, CLIP2) to load"
|
|
sdxl_refiner_model = "SDXL Refiner Main Modde (UNet, VAE, CLIP2) to load"
|
|
onnx_main_model = "ONNX Main model (UNet, VAE, CLIP) to load"
|
|
lora_weight = "The weight at which the LoRA is applied to each model"
|
|
compel_prompt = "Prompt to be parsed by Compel to create a conditioning tensor"
|
|
raw_prompt = "Raw prompt text (no parsing)"
|
|
sdxl_aesthetic = "The aesthetic score to apply to the conditioning tensor"
|
|
skipped_layers = "Number of layers to skip in text encoder"
|
|
seed = "Seed for random number generation"
|
|
steps = "Number of steps to run"
|
|
width = "Width of output (px)"
|
|
height = "Height of output (px)"
|
|
control = "ControlNet(s) to apply"
|
|
ip_adapter = "IP-Adapter to apply"
|
|
t2i_adapter = "T2I-Adapter(s) to apply"
|
|
denoised_latents = "Denoised latents tensor"
|
|
latents = "Latents tensor"
|
|
strength = "Strength of denoising (proportional to steps)"
|
|
metadata = "Optional metadata to be saved with the image"
|
|
metadata_collection = "Collection of Metadata"
|
|
metadata_item_polymorphic = "A single metadata item or collection of metadata items"
|
|
metadata_item_label = "Label for this metadata item"
|
|
metadata_item_value = "The value for this metadata item (may be any type)"
|
|
workflow = "Optional workflow to be saved with the image"
|
|
interp_mode = "Interpolation mode"
|
|
torch_antialias = "Whether or not to apply antialiasing (bilinear or bicubic only)"
|
|
fp32 = "Whether or not to use full float32 precision"
|
|
precision = "Precision to use"
|
|
tiled = "Processing using overlapping tiles (reduce memory consumption)"
|
|
detect_res = "Pixel resolution for detection"
|
|
image_res = "Pixel resolution for output image"
|
|
safe_mode = "Whether or not to use safe mode"
|
|
scribble_mode = "Whether or not to use scribble mode"
|
|
scale_factor = "The factor by which to scale"
|
|
blend_alpha = (
|
|
"Blending factor. 0.0 = use input A only, 1.0 = use input B only, 0.5 = 50% mix of input A and input B."
|
|
)
|
|
num_1 = "The first number"
|
|
num_2 = "The second number"
|
|
mask = "The mask to use for the operation"
|
|
board = "The board to save the image to"
|
|
image = "The image to process"
|
|
tile_size = "Tile size"
|
|
inclusive_low = "The inclusive low value"
|
|
exclusive_high = "The exclusive high value"
|
|
decimal_places = "The number of decimal places to round to"
|
|
|
|
|
|
class Input(str, Enum):
|
|
"""
|
|
The type of input a field accepts.
|
|
- `Input.Direct`: The field must have its value provided directly, when the invocation and field \
|
|
are instantiated.
|
|
- `Input.Connection`: The field must have its value provided by a connection.
|
|
- `Input.Any`: The field may have its value provided either directly or by a connection.
|
|
"""
|
|
|
|
Connection = "connection"
|
|
Direct = "direct"
|
|
Any = "any"
|
|
|
|
|
|
class UIType(str, Enum):
|
|
"""
|
|
Type hints for the UI.
|
|
If a field should be provided a data type that does not exactly match the python type of the field, \
|
|
use this to provide the type that should be used instead. See the node development docs for detail \
|
|
on adding a new field type, which involves client-side changes.
|
|
"""
|
|
|
|
# region Primitives
|
|
Boolean = "boolean"
|
|
Color = "ColorField"
|
|
Conditioning = "ConditioningField"
|
|
Control = "ControlField"
|
|
Float = "float"
|
|
Image = "ImageField"
|
|
Integer = "integer"
|
|
Latents = "LatentsField"
|
|
String = "string"
|
|
# endregion
|
|
|
|
# region Collection Primitives
|
|
BooleanCollection = "BooleanCollection"
|
|
ColorCollection = "ColorCollection"
|
|
ConditioningCollection = "ConditioningCollection"
|
|
ControlCollection = "ControlCollection"
|
|
FloatCollection = "FloatCollection"
|
|
ImageCollection = "ImageCollection"
|
|
IntegerCollection = "IntegerCollection"
|
|
LatentsCollection = "LatentsCollection"
|
|
StringCollection = "StringCollection"
|
|
# endregion
|
|
|
|
# region Polymorphic Primitives
|
|
BooleanPolymorphic = "BooleanPolymorphic"
|
|
ColorPolymorphic = "ColorPolymorphic"
|
|
ConditioningPolymorphic = "ConditioningPolymorphic"
|
|
ControlPolymorphic = "ControlPolymorphic"
|
|
FloatPolymorphic = "FloatPolymorphic"
|
|
ImagePolymorphic = "ImagePolymorphic"
|
|
IntegerPolymorphic = "IntegerPolymorphic"
|
|
LatentsPolymorphic = "LatentsPolymorphic"
|
|
StringPolymorphic = "StringPolymorphic"
|
|
# endregion
|
|
|
|
# region Models
|
|
MainModel = "MainModelField"
|
|
SDXLMainModel = "SDXLMainModelField"
|
|
SDXLRefinerModel = "SDXLRefinerModelField"
|
|
ONNXModel = "ONNXModelField"
|
|
VaeModel = "VaeModelField"
|
|
LoRAModel = "LoRAModelField"
|
|
ControlNetModel = "ControlNetModelField"
|
|
IPAdapterModel = "IPAdapterModelField"
|
|
UNet = "UNetField"
|
|
Vae = "VaeField"
|
|
CLIP = "ClipField"
|
|
# endregion
|
|
|
|
# region Iterate/Collect
|
|
Collection = "Collection"
|
|
CollectionItem = "CollectionItem"
|
|
# endregion
|
|
|
|
# region Misc
|
|
Enum = "enum"
|
|
Scheduler = "Scheduler"
|
|
WorkflowField = "WorkflowField"
|
|
IsIntermediate = "IsIntermediate"
|
|
BoardField = "BoardField"
|
|
Any = "Any"
|
|
MetadataItem = "MetadataItem"
|
|
MetadataItemCollection = "MetadataItemCollection"
|
|
MetadataItemPolymorphic = "MetadataItemPolymorphic"
|
|
MetadataDict = "MetadataDict"
|
|
# endregion
|
|
|
|
|
|
class UIComponent(str, Enum):
|
|
"""
|
|
The type of UI component to use for a field, used to override the default components, which are \
|
|
inferred from the field type.
|
|
"""
|
|
|
|
None_ = "none"
|
|
Textarea = "textarea"
|
|
Slider = "slider"
|
|
|
|
|
|
class _InputField(BaseModel):
|
|
"""
|
|
*DO NOT USE*
|
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
|
purpose in the backend.
|
|
"""
|
|
|
|
input: Input
|
|
ui_hidden: bool
|
|
ui_type: Optional[UIType]
|
|
ui_component: Optional[UIComponent]
|
|
ui_order: Optional[int]
|
|
ui_choice_labels: Optional[dict[str, str]]
|
|
item_default: Optional[Any]
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
class _OutputField(BaseModel):
|
|
"""
|
|
*DO NOT USE*
|
|
This helper class is used to tell the client about our custom field attributes via OpenAPI
|
|
schema generation, and Typescript type generation from that schema. It serves no functional
|
|
purpose in the backend.
|
|
"""
|
|
|
|
ui_hidden: bool
|
|
ui_type: Optional[UIType]
|
|
ui_order: Optional[int]
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
def get_type(klass: BaseModel) -> str:
|
|
"""Helper function to get an invocation or invocation output's type. This is the default value of the `type` field."""
|
|
return klass.model_fields["type"].default
|
|
|
|
|
|
def InputField(
|
|
# copied from pydantic's Field
|
|
default: Any = _Unset,
|
|
default_factory: Callable[[], Any] | None = _Unset,
|
|
title: str | None = _Unset,
|
|
description: str | None = _Unset,
|
|
pattern: str | None = _Unset,
|
|
strict: bool | None = _Unset,
|
|
gt: float | None = _Unset,
|
|
ge: float | None = _Unset,
|
|
lt: float | None = _Unset,
|
|
le: float | None = _Unset,
|
|
multiple_of: float | None = _Unset,
|
|
allow_inf_nan: bool | None = _Unset,
|
|
max_digits: int | None = _Unset,
|
|
decimal_places: int | None = _Unset,
|
|
min_length: int | None = _Unset,
|
|
max_length: int | None = _Unset,
|
|
# custom
|
|
input: Input = Input.Any,
|
|
ui_type: Optional[UIType] = None,
|
|
ui_component: Optional[UIComponent] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
ui_choice_labels: Optional[dict[str, str]] = None,
|
|
item_default: Optional[Any] = None,
|
|
) -> Any:
|
|
"""
|
|
Creates an input field for an invocation.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param Input input: [Input.Any] The kind of input this field requires. \
|
|
`Input.Direct` means a value must be provided on instantiation. \
|
|
`Input.Connection` means the value must be provided by a connection. \
|
|
`Input.Any` means either will do.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
:param UIComponent ui_component: [None] Optionally specifies a specific component to use in the UI. \
|
|
The UI will always render a suitable component, but sometimes you want something different than the default. \
|
|
For example, a `string` field will default to a single-line input, but you may want a multi-line textarea instead. \
|
|
For this case, you could provide `UIComponent.Textarea`.
|
|
|
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI.
|
|
|
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
|
|
|
: param bool item_default: [None] Specifies the default item value, if this is a collection input. \
|
|
Ignored for non-collection fields.
|
|
"""
|
|
|
|
json_schema_extra_: dict[str, Any] = dict(
|
|
input=input,
|
|
ui_type=ui_type,
|
|
ui_component=ui_component,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
item_default=item_default,
|
|
ui_choice_labels=ui_choice_labels,
|
|
)
|
|
|
|
field_args = dict(
|
|
default=default,
|
|
default_factory=default_factory,
|
|
title=title,
|
|
description=description,
|
|
pattern=pattern,
|
|
strict=strict,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
)
|
|
|
|
"""
|
|
Invocation definitions have their fields typed correctly for their `invoke()` functions.
|
|
This typing is often more specific than the actual invocation definition requires, because
|
|
fields may have values provided only by connections.
|
|
|
|
For example, consider an ResizeImageInvocation with an `image: ImageField` field.
|
|
|
|
`image` is required during the call to `invoke()`, but when the python class is instantiated,
|
|
the field may not be present. This is fine, because that image field will be provided by a
|
|
an ancestor node that outputs the image.
|
|
|
|
So we'd like to type that `image` field as `Optional[ImageField]`. If we do that, however, then
|
|
we need to handle a lot of extra logic in the `invoke()` function to check if the field has a
|
|
value or not. This is very tedious.
|
|
|
|
Ideally, the invocation definition would be able to specify that the field is required during
|
|
invocation, but optional during instantiation. So the field would be typed as `image: ImageField`,
|
|
but when calling the `invoke()` function, we raise an error if the field is not present.
|
|
|
|
To do this, we need to do a bit of fanagling to make the pydantic field optional, and then do
|
|
extra validation when calling `invoke()`.
|
|
|
|
There is some additional logic here to cleaning create the pydantic field via the wrapper.
|
|
"""
|
|
|
|
# Filter out field args not provided
|
|
provided_args = {k: v for (k, v) in field_args.items() if v is not PydanticUndefined}
|
|
|
|
if (default is not PydanticUndefined) and (default_factory is not PydanticUndefined):
|
|
raise ValueError("Cannot specify both default and default_factory")
|
|
|
|
# because we are manually making fields optional, we need to store the original required bool for reference later
|
|
if default is PydanticUndefined and default_factory is PydanticUndefined:
|
|
json_schema_extra_.update(dict(orig_required=True))
|
|
else:
|
|
json_schema_extra_.update(dict(orig_required=False))
|
|
|
|
# make Input.Any and Input.Connection fields optional, providing None as a default if the field doesn't already have one
|
|
if (input is Input.Any or input is Input.Connection) and default_factory is PydanticUndefined:
|
|
default_ = None if default is PydanticUndefined else default
|
|
provided_args.update(dict(default=default_))
|
|
if default is not PydanticUndefined:
|
|
# before invoking, we'll grab the original default value and set it on the field if the field wasn't provided a value
|
|
json_schema_extra_.update(dict(default=default))
|
|
json_schema_extra_.update(dict(orig_default=default))
|
|
elif default is not PydanticUndefined and default_factory is PydanticUndefined:
|
|
default_ = default
|
|
provided_args.update(dict(default=default_))
|
|
json_schema_extra_.update(dict(orig_default=default_))
|
|
elif default_factory is not PydanticUndefined:
|
|
provided_args.update(dict(default_factory=default_factory))
|
|
# TODO: cannot serialize default_factory...
|
|
# json_schema_extra_.update(dict(orig_default_factory=default_factory))
|
|
|
|
return Field(
|
|
**provided_args,
|
|
json_schema_extra=json_schema_extra_,
|
|
)
|
|
|
|
|
|
def OutputField(
|
|
# copied from pydantic's Field
|
|
default: Any = _Unset,
|
|
default_factory: Callable[[], Any] | None = _Unset,
|
|
title: str | None = _Unset,
|
|
description: str | None = _Unset,
|
|
pattern: str | None = _Unset,
|
|
strict: bool | None = _Unset,
|
|
gt: float | None = _Unset,
|
|
ge: float | None = _Unset,
|
|
lt: float | None = _Unset,
|
|
le: float | None = _Unset,
|
|
multiple_of: float | None = _Unset,
|
|
allow_inf_nan: bool | None = _Unset,
|
|
max_digits: int | None = _Unset,
|
|
decimal_places: int | None = _Unset,
|
|
min_length: int | None = _Unset,
|
|
max_length: int | None = _Unset,
|
|
# custom
|
|
ui_type: Optional[UIType] = None,
|
|
ui_hidden: bool = False,
|
|
ui_order: Optional[int] = None,
|
|
) -> Any:
|
|
"""
|
|
Creates an output field for an invocation output.
|
|
|
|
This is a wrapper for Pydantic's [Field](https://docs.pydantic.dev/1.10/usage/schema/#field-customization) \
|
|
that adds a few extra parameters to support graph execution and the node editor UI.
|
|
|
|
:param UIType ui_type: [None] Optionally provides an extra type hint for the UI. \
|
|
In some situations, the field's type is not enough to infer the correct UI type. \
|
|
For example, model selection fields should render a dropdown UI component to select a model. \
|
|
Internally, there is no difference between SD-1, SD-2 and SDXL model fields, they all use \
|
|
`MainModelField`. So to ensure the base-model-specific UI is rendered, you can use \
|
|
`UIType.SDXLMainModelField` to indicate that the field is an SDXL main model field.
|
|
|
|
: param bool ui_hidden: [False] Specifies whether or not this field should be hidden in the UI. \
|
|
|
|
: param int ui_order: [None] Specifies the order in which this field should be rendered in the UI. \
|
|
"""
|
|
return Field(
|
|
default=default,
|
|
default_factory=default_factory,
|
|
title=title,
|
|
description=description,
|
|
pattern=pattern,
|
|
strict=strict,
|
|
gt=gt,
|
|
ge=ge,
|
|
lt=lt,
|
|
le=le,
|
|
multiple_of=multiple_of,
|
|
allow_inf_nan=allow_inf_nan,
|
|
max_digits=max_digits,
|
|
decimal_places=decimal_places,
|
|
min_length=min_length,
|
|
max_length=max_length,
|
|
json_schema_extra=dict(
|
|
ui_type=ui_type,
|
|
ui_hidden=ui_hidden,
|
|
ui_order=ui_order,
|
|
),
|
|
)
|
|
|
|
|
|
class UIConfigBase(BaseModel):
|
|
"""
|
|
Provides additional node configuration to the UI.
|
|
This is used internally by the @invocation decorator logic. Do not use this directly.
|
|
"""
|
|
|
|
tags: Optional[list[str]] = Field(default_factory=None, description="The node's tags")
|
|
title: Optional[str] = Field(default=None, description="The node's display name")
|
|
category: Optional[str] = Field(default=None, description="The node's category")
|
|
version: Optional[str] = Field(
|
|
default=None,
|
|
description='The node\'s version. Should be a valid semver string e.g. "1.0.0" or "3.8.13".',
|
|
)
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
)
|
|
|
|
|
|
class InvocationContext:
|
|
"""Initialized and provided to on execution of invocations."""
|
|
|
|
services: InvocationServices
|
|
graph_execution_state_id: str
|
|
queue_id: str
|
|
queue_item_id: int
|
|
queue_batch_id: str
|
|
|
|
def __init__(
|
|
self,
|
|
services: InvocationServices,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
):
|
|
self.services = services
|
|
self.graph_execution_state_id = graph_execution_state_id
|
|
self.queue_id = queue_id
|
|
self.queue_item_id = queue_item_id
|
|
self.queue_batch_id = queue_batch_id
|
|
|
|
|
|
class BaseInvocationOutput(BaseModel):
|
|
"""
|
|
Base class for all invocation outputs.
|
|
|
|
All invocation outputs must use the `@invocation_output` decorator to provide their unique type.
|
|
"""
|
|
|
|
_output_classes: ClassVar[set[BaseInvocationOutput]] = set()
|
|
|
|
@classmethod
|
|
def register_output(cls, output: BaseInvocationOutput) -> None:
|
|
cls._output_classes.add(output)
|
|
|
|
@classmethod
|
|
def get_outputs(cls) -> Iterable[BaseInvocationOutput]:
|
|
return cls._output_classes
|
|
|
|
@classmethod
|
|
def get_outputs_union(cls) -> UnionType:
|
|
outputs_union = Union[tuple(cls._output_classes)] # type: ignore [valid-type]
|
|
return outputs_union # type: ignore [return-value]
|
|
|
|
@classmethod
|
|
def get_output_types(cls) -> Iterable[str]:
|
|
return map(lambda i: get_type(i), BaseInvocationOutput.get_outputs())
|
|
|
|
@staticmethod
|
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
|
# Because we use a pydantic Literal field with default value for the invocation type,
|
|
# it will be typed as optional in the OpenAPI schema. Make it required manually.
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = list()
|
|
schema["required"].extend(["type"])
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_serialization_defaults_required=True,
|
|
json_schema_extra=json_schema_extra,
|
|
)
|
|
|
|
|
|
class RequiredConnectionException(Exception):
|
|
"""Raised when an field which requires a connection did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing connections for field {field_name}")
|
|
|
|
|
|
class MissingInputException(Exception):
|
|
"""Raised when an field which requires some input, but did not receive a value."""
|
|
|
|
def __init__(self, node_id: str, field_name: str):
|
|
super().__init__(f"Node {node_id} missing value or connection for field {field_name}")
|
|
|
|
|
|
class BaseInvocation(ABC, BaseModel):
|
|
"""
|
|
A node to process inputs and produce outputs.
|
|
May use dependency injection in __init__ to receive providers.
|
|
|
|
All invocations must use the `@invocation` decorator to provide their unique type.
|
|
"""
|
|
|
|
_invocation_classes: ClassVar[set[BaseInvocation]] = set()
|
|
|
|
@classmethod
|
|
def register_invocation(cls, invocation: BaseInvocation) -> None:
|
|
cls._invocation_classes.add(invocation)
|
|
|
|
@classmethod
|
|
def get_invocations_union(cls) -> UnionType:
|
|
invocations_union = Union[tuple(cls._invocation_classes)] # type: ignore [valid-type]
|
|
return invocations_union # type: ignore [return-value]
|
|
|
|
@classmethod
|
|
def get_invocations(cls) -> Iterable[BaseInvocation]:
|
|
app_config = InvokeAIAppConfig.get_config()
|
|
allowed_invocations: set[BaseInvocation] = set()
|
|
for sc in cls._invocation_classes:
|
|
invocation_type = get_type(sc)
|
|
is_in_allowlist = (
|
|
invocation_type in app_config.allow_nodes if isinstance(app_config.allow_nodes, list) else True
|
|
)
|
|
is_in_denylist = (
|
|
invocation_type in app_config.deny_nodes if isinstance(app_config.deny_nodes, list) else False
|
|
)
|
|
if is_in_allowlist and not is_in_denylist:
|
|
allowed_invocations.add(sc)
|
|
return allowed_invocations
|
|
|
|
@classmethod
|
|
def get_invocations_map(cls) -> dict[str, BaseInvocation]:
|
|
# Get the type strings out of the literals and into a dictionary
|
|
return dict(
|
|
map(
|
|
lambda i: (get_type(i), i),
|
|
BaseInvocation.get_invocations(),
|
|
)
|
|
)
|
|
|
|
@classmethod
|
|
def get_invocation_types(cls) -> Iterable[str]:
|
|
return map(lambda i: get_type(i), BaseInvocation.get_invocations())
|
|
|
|
@classmethod
|
|
def get_output_type(cls) -> BaseInvocationOutput:
|
|
return signature(cls.invoke).return_annotation
|
|
|
|
@staticmethod
|
|
def json_schema_extra(schema: dict[str, Any], model_class: Type[BaseModel]) -> None:
|
|
# Add the various UI-facing attributes to the schema. These are used to build the invocation templates.
|
|
uiconfig = getattr(model_class, "UIConfig", None)
|
|
if uiconfig and hasattr(uiconfig, "title"):
|
|
schema["title"] = uiconfig.title
|
|
if uiconfig and hasattr(uiconfig, "tags"):
|
|
schema["tags"] = uiconfig.tags
|
|
if uiconfig and hasattr(uiconfig, "category"):
|
|
schema["category"] = uiconfig.category
|
|
if uiconfig and hasattr(uiconfig, "version"):
|
|
schema["version"] = uiconfig.version
|
|
if "required" not in schema or not isinstance(schema["required"], list):
|
|
schema["required"] = list()
|
|
schema["required"].extend(["type", "id"])
|
|
|
|
@abstractmethod
|
|
def invoke(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
"""Invoke with provided context and return outputs."""
|
|
pass
|
|
|
|
def invoke_internal(self, context: InvocationContext) -> BaseInvocationOutput:
|
|
for field_name, field in self.model_fields.items():
|
|
if not field.json_schema_extra or callable(field.json_schema_extra):
|
|
# something has gone terribly awry, we should always have this and it should be a dict
|
|
continue
|
|
|
|
# Here we handle the case where the field is optional in the pydantic class, but required
|
|
# in the `invoke()` method.
|
|
|
|
orig_default = field.json_schema_extra.get("orig_default", PydanticUndefined)
|
|
orig_required = field.json_schema_extra.get("orig_required", True)
|
|
input_ = field.json_schema_extra.get("input", None)
|
|
if orig_default is not PydanticUndefined and not hasattr(self, field_name):
|
|
setattr(self, field_name, orig_default)
|
|
if orig_required and orig_default is PydanticUndefined and getattr(self, field_name) is None:
|
|
if input_ == Input.Connection:
|
|
raise RequiredConnectionException(self.model_fields["type"].default, field_name)
|
|
elif input_ == Input.Any:
|
|
raise MissingInputException(self.model_fields["type"].default, field_name)
|
|
|
|
# skip node cache codepath if it's disabled
|
|
if context.services.configuration.node_cache_size == 0:
|
|
return self.invoke(context)
|
|
|
|
output: BaseInvocationOutput
|
|
if self.use_cache:
|
|
key = context.services.invocation_cache.create_key(self)
|
|
cached_value = context.services.invocation_cache.get(key)
|
|
if cached_value is None:
|
|
context.services.logger.debug(f'Invocation cache miss for type "{self.get_type()}": {self.id}')
|
|
output = self.invoke(context)
|
|
context.services.invocation_cache.save(key, output)
|
|
return output
|
|
else:
|
|
context.services.logger.debug(f'Invocation cache hit for type "{self.get_type()}": {self.id}')
|
|
return cached_value
|
|
else:
|
|
context.services.logger.debug(f'Skipping invocation cache for "{self.get_type()}": {self.id}')
|
|
return self.invoke(context)
|
|
|
|
def get_type(self) -> str:
|
|
return self.model_fields["type"].default
|
|
|
|
id: str = Field(
|
|
default_factory=uuid_string,
|
|
description="The id of this instance of an invocation. Must be unique among all instances of invocations.",
|
|
)
|
|
is_intermediate: Optional[bool] = Field(
|
|
default=False,
|
|
description="Whether or not this is an intermediate invocation.",
|
|
json_schema_extra=dict(ui_type=UIType.IsIntermediate),
|
|
)
|
|
use_cache: bool = InputField(default=True, description="Whether or not to use the cache")
|
|
|
|
UIConfig: ClassVar[Type[UIConfigBase]]
|
|
|
|
model_config = ConfigDict(
|
|
validate_assignment=True,
|
|
json_schema_extra=json_schema_extra,
|
|
json_schema_serialization_defaults_required=True,
|
|
coerce_numbers_to_str=True,
|
|
)
|
|
|
|
|
|
TBaseInvocation = TypeVar("TBaseInvocation", bound=BaseInvocation)
|
|
|
|
|
|
def invocation(
|
|
invocation_type: str,
|
|
title: Optional[str] = None,
|
|
tags: Optional[list[str]] = None,
|
|
category: Optional[str] = None,
|
|
version: Optional[str] = None,
|
|
use_cache: Optional[bool] = True,
|
|
) -> Callable[[Type[TBaseInvocation]], Type[TBaseInvocation]]:
|
|
"""
|
|
Adds metadata to an invocation.
|
|
|
|
:param str invocation_type: The type of the invocation. Must be unique among all invocations.
|
|
:param Optional[str] title: Adds a title to the invocation. Use if the auto-generated title isn't quite right. Defaults to None.
|
|
:param Optional[list[str]] tags: Adds tags to the invocation. Invocations may be searched for by their tags. Defaults to None.
|
|
:param Optional[str] category: Adds a category to the invocation. Used to group the invocations in the UI. Defaults to None.
|
|
:param Optional[str] version: Adds a version to the invocation. Must be a valid semver string. Defaults to None.
|
|
:param Optional[bool] use_cache: Whether or not to use the invocation cache. Defaults to True. The user may override this in the workflow editor.
|
|
"""
|
|
|
|
def wrapper(cls: Type[TBaseInvocation]) -> Type[TBaseInvocation]:
|
|
# Validate invocation types on creation of invocation classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(invocation_type) is None:
|
|
raise ValueError(f'"invocation_type" must consist of non-whitespace characters, got "{invocation_type}"')
|
|
|
|
if invocation_type in BaseInvocation.get_invocation_types():
|
|
raise ValueError(f'Invocation type "{invocation_type}" already exists')
|
|
|
|
# Add OpenAPI schema extras
|
|
uiconf_name = cls.__qualname__ + ".UIConfig"
|
|
if not hasattr(cls, "UIConfig") or cls.UIConfig.__qualname__ != uiconf_name:
|
|
cls.UIConfig = type(uiconf_name, (UIConfigBase,), dict())
|
|
if title is not None:
|
|
cls.UIConfig.title = title
|
|
if tags is not None:
|
|
cls.UIConfig.tags = tags
|
|
if category is not None:
|
|
cls.UIConfig.category = category
|
|
if version is not None:
|
|
try:
|
|
semver.Version.parse(version)
|
|
except ValueError as e:
|
|
raise InvalidVersionError(f'Invalid version string for node "{invocation_type}": "{version}"') from e
|
|
cls.UIConfig.version = version
|
|
if use_cache is not None:
|
|
cls.model_fields["use_cache"].default = use_cache
|
|
|
|
# Add the invocation type to the model.
|
|
|
|
# You'd be tempted to just add the type field and rebuild the model, like this:
|
|
# cls.model_fields.update(type=FieldInfo.from_annotated_attribute(Literal[invocation_type], invocation_type))
|
|
# cls.model_rebuild() or cls.model_rebuild(force=True)
|
|
|
|
# Unfortunately, because the `GraphInvocation` uses a forward ref in its `graph` field's annotation, this does
|
|
# not work. Instead, we have to create a new class with the type field and patch the original class with it.
|
|
|
|
invocation_type_annotation = Literal[invocation_type] # type: ignore
|
|
invocation_type_field = Field(
|
|
title="type",
|
|
default=invocation_type,
|
|
)
|
|
|
|
docstring = cls.__doc__
|
|
cls = create_model(
|
|
cls.__qualname__,
|
|
__base__=cls,
|
|
__module__=cls.__module__,
|
|
type=(invocation_type_annotation, invocation_type_field),
|
|
)
|
|
cls.__doc__ = docstring
|
|
|
|
# TODO: how to type this correctly? it's typed as ModelMetaclass, a private class in pydantic
|
|
BaseInvocation.register_invocation(cls) # type: ignore
|
|
|
|
return cls
|
|
|
|
return wrapper
|
|
|
|
|
|
TBaseInvocationOutput = TypeVar("TBaseInvocationOutput", bound=BaseInvocationOutput)
|
|
|
|
|
|
def invocation_output(
|
|
output_type: str,
|
|
) -> Callable[[Type[TBaseInvocationOutput]], Type[TBaseInvocationOutput]]:
|
|
"""
|
|
Adds metadata to an invocation output.
|
|
|
|
:param str output_type: The type of the invocation output. Must be unique among all invocation outputs.
|
|
"""
|
|
|
|
def wrapper(cls: Type[TBaseInvocationOutput]) -> Type[TBaseInvocationOutput]:
|
|
# Validate output types on creation of invocation output classes
|
|
# TODO: ensure unique?
|
|
if re.compile(r"^\S+$").match(output_type) is None:
|
|
raise ValueError(f'"output_type" must consist of non-whitespace characters, got "{output_type}"')
|
|
|
|
if output_type in BaseInvocationOutput.get_output_types():
|
|
raise ValueError(f'Invocation type "{output_type}" already exists')
|
|
|
|
# Add the output type to the model.
|
|
|
|
output_type_annotation = Literal[output_type] # type: ignore
|
|
output_type_field = Field(
|
|
title="type",
|
|
default=output_type,
|
|
)
|
|
|
|
docstring = cls.__doc__
|
|
cls = create_model(
|
|
cls.__qualname__,
|
|
__base__=cls,
|
|
__module__=cls.__module__,
|
|
type=(output_type_annotation, output_type_field),
|
|
)
|
|
cls.__doc__ = docstring
|
|
|
|
BaseInvocationOutput.register_output(cls) # type: ignore # TODO: how to type this correctly?
|
|
|
|
return cls
|
|
|
|
return wrapper
|
|
|
|
|
|
class WithWorkflow(BaseModel):
|
|
workflow: Optional[WorkflowField] = InputField(default=None, description=FieldDescriptions.workflow)
|
|
|
|
|
|
class MetadataItemField(BaseModel):
|
|
label: str = Field(description=FieldDescriptions.metadata_item_label)
|
|
value: Any = Field(description=FieldDescriptions.metadata_item_value)
|
|
|
|
|
|
class MetadataField(RootModel):
|
|
"""
|
|
Pydantic model for metadata with custom root of type dict[str, Any].
|
|
Metadata is stored without a strict schema.
|
|
"""
|
|
|
|
root: dict[str, Any] = Field(description="A dictionary of metadata, shape of which is arbitrary")
|
|
|
|
|
|
type_adapter_MetadataField = TypeAdapter(MetadataField)
|
|
|
|
|
|
class WithMetadata(BaseModel):
|
|
metadata: Optional[MetadataField] = InputField(default=None, description=FieldDescriptions.metadata)
|