InvokeAI/ldm/dream/generator/img2img.py
Lincoln Stein 4c482fe24a refactor how postprocessors work
- similar call structures for outpainting, outcropping and face restoration modules
- added documentation for outcropping
- post-processing steps now leave a provenance chain (of sorts) in the sd-metadata field:

~~~
scripts/sd-metadata.py outputs/img-samples/curly.942491079.upscale.png
outputs/img-samples/curly.942491079.upscale.png:
 {
    "model": "stable diffusion",
    "model_id": "stable-diffusion-1.4",
    "model_hash": "fe4efff1e174c627256e44ec2991ba279b3816e364b49f9be2abc0b3ff3f8556",
    "app_id": "lstein/stable-diffusion",
    "app_version": "v1.15",
    "image": {
        "height": 512,
        "width": 512,
        "steps": 50,
        "cfg_scale": 7.5,
        "seed": 942491079,
        "prompt": [
            {
                "prompt": "pretty curly-haired redhead woman",
                "weight": 1.0
            }
        ],
        "postprocessing": [
            {
                "tool": "outcrop",
                "dream_command": "!fix \"test-pictures/curly.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -c top 64 right 64"
            },
            {
                "tool": "gfpgan",
                "dream_command": "!fix \"outputs/img-samples/curly.942491079.outcrop-02.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -G 0.8"
            },
            {
                "tool": "upscale",
                "dream_command": "!fix \"outputs/img-samples/curly.942491079.gfpgan.png\" -s 50 -S 942491079 -W 512 -H 512 -C 7.5 -A k_lms -U 4.0 0.75"
            }
        ],
        "sampler": "k_lms",
        "variations": [],
        "type": "txt2img"
    }
}
~~~
2022-10-04 22:37:25 -04:00

70 lines
2.4 KiB
Python

'''
ldm.dream.generator.img2img descends from ldm.dream.generator
'''
import torch
import numpy as np
from ldm.dream.devices import choose_autocast
from ldm.dream.generator.base import Generator
from ldm.models.diffusion.ddim import DDIMSampler
class Img2Img(Generator):
def __init__(self, model, precision):
super().__init__(model, precision)
self.init_latent = None # by get_noise()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,strength,step_callback=None,threshold=0.0,perlin=0.0,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
self.perlin = perlin
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
scope = choose_autocast(self.precision)
with scope(self.model.device.type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
t_enc = int(strength * steps)
uc, c = conditioning
def make_image(x_T):
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
self.init_latent,
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
img_callback = step_callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
)
return self.sample_to_image(samples)
return make_image
def get_noise(self,width,height):
device = self.model.device
init_latent = self.init_latent
assert init_latent is not None,'call to get_noise() when init_latent not set'
if device.type == 'mps':
x = torch.randn_like(init_latent, device='cpu').to(device)
else:
x = torch.randn_like(init_latent, device=device)
if self.perlin > 0.0:
shape = init_latent.shape
x = (1-self.perlin)*x + self.perlin*self.get_perlin_noise(shape[3], shape[2])
return x