InvokeAI/invokeai/app/util/custom_openapi.py
psychedelicious 2f9ebdec69 fix(app): openapi schema generation
Some tech debt related to dynamic pydantic schemas for invocations became problematic. Including the invocations and results in the event schemas was breaking pydantic's handling of ref schemas. I don't really understand why - I think it's a pydantic bug in a remote edge case that we are hitting.

After many failed attempts I landed on this implementation, which is actually much tidier than what was in there before.

- Create pydantic-enabled types for `AnyInvocation` and `AnyInvocationOutput` and use these in place of the janky dynamic unions. Actually, they are kinda the same, but better encapsulated. Use these in `Graph`, `GraphExecutionState`, `InvocationEventBase` and `InvocationCompleteEvent`.
- Revise the custom openapi function to work with the new models.
- Split out the custom openapi function to a separate file. Add a `post_transform` callback so consumers can customize the output schema.
- Update makefile scripts.
2024-05-30 12:03:03 +10:00

115 lines
5.4 KiB
Python

from typing import Any, Callable, Optional
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from pydantic.json_schema import models_json_schema
from invokeai.app.invocations.baseinvocation import BaseInvocation, BaseInvocationOutput, UIConfigBase
from invokeai.app.invocations.fields import InputFieldJSONSchemaExtra, OutputFieldJSONSchemaExtra
from invokeai.app.invocations.model import ModelIdentifierField
from invokeai.app.services.events.events_common import EventBase
from invokeai.app.services.session_processor.session_processor_common import ProgressImage
def move_defs_to_top_level(openapi_schema: dict[str, Any], component_schema: dict[str, Any]) -> None:
"""Moves a component schema's $defs to the top level of the openapi schema. Useful when generating a schema
for a single model that needs to be added back to the top level of the schema. Mutates openapi_schema and
component_schema."""
defs = component_schema.pop("$defs", {})
for schema_key, json_schema in defs.items():
if schema_key in openapi_schema["components"]["schemas"]:
continue
openapi_schema["components"]["schemas"][schema_key] = json_schema
def get_openapi_func(
app: FastAPI, post_transform: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None
) -> Callable[[], dict[str, Any]]:
"""Gets the OpenAPI schema generator function.
Args:
app (FastAPI): The FastAPI app to generate the schema for.
post_transform (Optional[Callable[[dict[str, Any]], dict[str, Any]]], optional): A function to apply to the
generated schema before returning it. Defaults to None.
Returns:
Callable[[], dict[str, Any]]: The OpenAPI schema generator function. When first called, the generated schema is
cached in `app.openapi_schema`. On subsequent calls, the cached schema is returned. This caching behaviour
matches FastAPI's default schema generation caching.
"""
def openapi() -> dict[str, Any]:
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title=app.title,
description="An API for invoking AI image operations",
version="1.0.0",
routes=app.routes,
separate_input_output_schemas=False, # https://fastapi.tiangolo.com/how-to/separate-openapi-schemas/
)
# We'll create a map of invocation type to output schema to make some types simpler on the client.
invocation_output_map_properties: dict[str, Any] = {}
invocation_output_map_required: list[str] = []
# We need to manually add all outputs to the schema - pydantic doesn't add them because they aren't used directly.
for output in BaseInvocationOutput.get_outputs():
json_schema = output.model_json_schema(mode="serialization", ref_template="#/components/schemas/{model}")
move_defs_to_top_level(openapi_schema, json_schema)
openapi_schema["components"]["schemas"][output.__name__] = json_schema
# Technically, invocations are added to the schema by pydantic, but we still need to manually set their output
# property, so we'll just do it all manually.
for invocation in BaseInvocation.get_invocations():
json_schema = invocation.model_json_schema(
mode="serialization", ref_template="#/components/schemas/{model}"
)
move_defs_to_top_level(openapi_schema, json_schema)
output_title = invocation.get_output_annotation().__name__
outputs_ref = {"$ref": f"#/components/schemas/{output_title}"}
json_schema["output"] = outputs_ref
openapi_schema["components"]["schemas"][invocation.__name__] = json_schema
# Add this invocation and its output to the output map
invocation_type = invocation.get_type()
invocation_output_map_properties[invocation_type] = json_schema["output"]
invocation_output_map_required.append(invocation_type)
# Add the output map to the schema
openapi_schema["components"]["schemas"]["InvocationOutputMap"] = {
"type": "object",
"properties": invocation_output_map_properties,
"required": invocation_output_map_required,
}
# Some models don't end up in the schemas as standalone definitions because they aren't used directly in the API.
# We need to add them manually here. WARNING: Pydantic can choke if you call `model.model_json_schema()` to get
# a schema. This has something to do with schema refs - not totally clear. For whatever reason, using
# `models_json_schema` seems to work fine.
additional_models = [
*EventBase.get_events(),
UIConfigBase,
InputFieldJSONSchemaExtra,
OutputFieldJSONSchemaExtra,
ModelIdentifierField,
ProgressImage,
]
additional_schemas = models_json_schema(
[(m, "serialization") for m in additional_models],
ref_template="#/components/schemas/{model}",
)
# additional_schemas[1] is a dict of $defs that we need to add to the top level of the schema
move_defs_to_top_level(openapi_schema, additional_schemas[1])
if post_transform is not None:
openapi_schema = post_transform(openapi_schema)
app.openapi_schema = openapi_schema
return app.openapi_schema
return openapi