InvokeAI/invokeai/app/invocations/latent.py
psychedelicious 50bef87da7 feat(db,nodes,api): refactor metadata
Metadata for the Linear UI is now sneakily provided via a `MetadataAccumulator` node, which the client populates / hooks up while building the graph.

Additionally, we provide the unexpanded graph with the metadata API response.

Both of these are embedded into the PNGs.

- Remove `metadata` from `ImageDTO`
- Split up the `images/` routes to accomodate this; metadata is only retrieved per-image
- `images/{image_name}` now gets the DTO
- `images/{image_name}/metadata` gets the new metadata
- `images/{image_name}/full` gets the full-sized image file
- Remove old metadata service
- Add `MetadataAccumulator` node, `CoreMetadataField`, hook up to `LatentsToImage` node
- Add `get_raw()` method to `ItemStorage`, retrieves the row from DB as a string, no pydantic parsing
- Update `images`related services to handle storing and retrieving the new metadata
- Add `get_metadata_graph_from_raw_session` which extracts the `graph` from `session` without needing to hydrate the session in pydantic, in preparation for providing it as metadata; also removes all references to the `MetadataAccumulator` node
2023-07-13 15:40:05 +10:00

639 lines
25 KiB
Python

# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654)
from typing import List, Literal, Optional, Union
import einops
import torch
from diffusers import ControlNetModel
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import SchedulerMixin as Scheduler
from pydantic import BaseModel, Field, validator
from invokeai.app.invocations.metadata import CoreMetadata
from invokeai.app.util.step_callback import stable_diffusion_step_callback
from ...backend.model_management.lora import ModelPatcher
from ...backend.stable_diffusion import PipelineIntermediateState
from ...backend.stable_diffusion.diffusers_pipeline import (
ConditioningData, ControlNetData, StableDiffusionGeneratorPipeline,
image_resized_to_grid_as_tensor)
from ...backend.stable_diffusion.diffusion.shared_invokeai_diffusion import \
PostprocessingSettings
from ...backend.stable_diffusion.schedulers import SCHEDULER_MAP
from ...backend.util.devices import torch_dtype
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
InvocationConfig, InvocationContext)
from .compel import ConditioningField
from .controlnet_image_processors import ControlField
from .image import ImageOutput
from .model import ModelInfo, UNetField, VaeField
class LatentsField(BaseModel):
"""A latents field used for passing latents between invocations"""
latents_name: Optional[str] = Field(
default=None, description="The name of the latents")
class Config:
schema_extra = {"required": ["latents_name"]}
class LatentsOutput(BaseInvocationOutput):
"""Base class for invocations that output latents"""
#fmt: off
type: Literal["latents_output"] = "latents_output"
# Inputs
latents: LatentsField = Field(default=None, description="The output latents")
width: int = Field(description="The width of the latents in pixels")
height: int = Field(description="The height of the latents in pixels")
#fmt: on
def build_latents_output(latents_name: str, latents: torch.Tensor):
return LatentsOutput(
latents=LatentsField(latents_name=latents_name),
width=latents.size()[3] * 8,
height=latents.size()[2] * 8,
)
SAMPLER_NAME_VALUES = Literal[
tuple(list(SCHEDULER_MAP.keys()))
]
def get_scheduler(
context: InvocationContext,
scheduler_info: ModelInfo,
scheduler_name: str,
) -> Scheduler:
scheduler_class, scheduler_extra_config = SCHEDULER_MAP.get(
scheduler_name, SCHEDULER_MAP['ddim'])
orig_scheduler_info = context.services.model_manager.get_model(
**scheduler_info.dict())
with orig_scheduler_info as orig_scheduler:
scheduler_config = orig_scheduler.config
if "_backup" in scheduler_config:
scheduler_config = scheduler_config["_backup"]
scheduler_config = {**scheduler_config, **
scheduler_extra_config, "_backup": scheduler_config}
scheduler = scheduler_class.from_config(scheduler_config)
# hack copied over from generate.py
if not hasattr(scheduler, 'uses_inpainting_model'):
scheduler.uses_inpainting_model = lambda: False
return scheduler
# Text to image
class TextToLatentsInvocation(BaseInvocation):
"""Generates latents from conditionings."""
type: Literal["t2l"] = "t2l"
# Inputs
# fmt: off
positive_conditioning: Optional[ConditioningField] = Field(description="Positive conditioning for generation")
negative_conditioning: Optional[ConditioningField] = Field(description="Negative conditioning for generation")
noise: Optional[LatentsField] = Field(description="The noise to use")
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
cfg_scale: Union[float, List[float]] = Field(default=7.5, ge=1, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
scheduler: SAMPLER_NAME_VALUES = Field(default="euler", description="The scheduler to use" )
unet: UNetField = Field(default=None, description="UNet submodel")
control: Union[ControlField, list[ControlField]] = Field(default=None, description="The control to use")
#seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
#seamless_axes: str = Field(default="", description="The axes to tile the image on, 'x' and/or 'y'")
# fmt: on
@validator("cfg_scale")
def ge_one(cls, v):
"""validate that all cfg_scale values are >= 1"""
if isinstance(v, list):
for i in v:
if i < 1:
raise ValueError('cfg_scale must be greater than 1')
else:
if v < 1:
raise ValueError('cfg_scale must be greater than 1')
return v
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
# "cfg_scale": "float",
"cfg_scale": "number"
}
},
}
# TODO: pass this an emitter method or something? or a session for dispatching?
def dispatch_progress(
self, context: InvocationContext, source_node_id: str,
intermediate_state: PipelineIntermediateState) -> None:
stable_diffusion_step_callback(
context=context,
intermediate_state=intermediate_state,
node=self.dict(),
source_node_id=source_node_id,
)
def get_conditioning_data(
self, context: InvocationContext, scheduler) -> ConditioningData:
c, extra_conditioning_info = context.services.latents.get(
self.positive_conditioning.conditioning_name)
uc, _ = context.services.latents.get(
self.negative_conditioning.conditioning_name)
conditioning_data = ConditioningData(
unconditioned_embeddings=uc,
text_embeddings=c,
guidance_scale=self.cfg_scale,
extra=extra_conditioning_info,
postprocessing_settings=PostprocessingSettings(
threshold=0.0, # threshold,
warmup=0.2, # warmup,
h_symmetry_time_pct=None, # h_symmetry_time_pct,
v_symmetry_time_pct=None # v_symmetry_time_pct,
),
)
conditioning_data = conditioning_data.add_scheduler_args_if_applicable(
scheduler,
# for ddim scheduler
eta=0.0, # ddim_eta
# for ancestral and sde schedulers
generator=torch.Generator(device=uc.device).manual_seed(0),
)
return conditioning_data
def create_pipeline(
self, unet, scheduler) -> StableDiffusionGeneratorPipeline:
# TODO:
# configure_model_padding(
# unet,
# self.seamless,
# self.seamless_axes,
# )
class FakeVae:
class FakeVaeConfig:
def __init__(self):
self.block_out_channels = [0]
def __init__(self):
self.config = FakeVae.FakeVaeConfig()
return StableDiffusionGeneratorPipeline(
vae=FakeVae(), # TODO: oh...
text_encoder=None,
tokenizer=None,
unet=unet,
scheduler=scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
precision="float16" if unet.dtype == torch.float16 else "float32",
)
def prep_control_data(
self,
context: InvocationContext,
# really only need model for dtype and device
model: StableDiffusionGeneratorPipeline,
control_input: List[ControlField],
latents_shape: List[int],
do_classifier_free_guidance: bool = True,
) -> List[ControlNetData]:
# assuming fixed dimensional scaling of 8:1 for image:latents
control_height_resize = latents_shape[2] * 8
control_width_resize = latents_shape[3] * 8
if control_input is None:
control_list = None
elif isinstance(control_input, list) and len(control_input) == 0:
control_list = None
elif isinstance(control_input, ControlField):
control_list = [control_input]
elif isinstance(control_input, list) and len(control_input) > 0 and isinstance(control_input[0], ControlField):
control_list = control_input
else:
control_list = None
if (control_list is None):
control_data = None
# from above handling, any control that is not None should now be of type list[ControlField]
else:
# FIXME: add checks to skip entry if model or image is None
# and if weight is None, populate with default 1.0?
control_data = []
control_models = []
for control_info in control_list:
# handle control models
if ("," in control_info.control_model):
control_model_split = control_info.control_model.split(",")
control_name = control_model_split[0]
control_subfolder = control_model_split[1]
print("Using HF model subfolders")
print(" control_name: ", control_name)
print(" control_subfolder: ", control_subfolder)
control_model = ControlNetModel.from_pretrained(
control_name, subfolder=control_subfolder,
torch_dtype=model.unet.dtype).to(
model.device)
else:
control_model = ControlNetModel.from_pretrained(
control_info.control_model, torch_dtype=model.unet.dtype).to(model.device)
control_models.append(control_model)
control_image_field = control_info.image
input_image = context.services.images.get_pil_image(
control_image_field.image_name)
# self.image.image_type, self.image.image_name
# FIXME: still need to test with different widths, heights, devices, dtypes
# and add in batch_size, num_images_per_prompt?
# and do real check for classifier_free_guidance?
# prepare_control_image should return torch.Tensor of shape(batch_size, 3, height, width)
control_image = model.prepare_control_image(
image=input_image,
do_classifier_free_guidance=do_classifier_free_guidance,
width=control_width_resize,
height=control_height_resize,
# batch_size=batch_size * num_images_per_prompt,
# num_images_per_prompt=num_images_per_prompt,
device=control_model.device,
dtype=control_model.dtype,
control_mode=control_info.control_mode,
)
control_item = ControlNetData(
model=control_model, image_tensor=control_image,
weight=control_info.control_weight,
begin_step_percent=control_info.begin_step_percent,
end_step_percent=control_info.end_step_percent,
control_mode=control_info.control_mode,)
control_data.append(control_item)
# MultiControlNetModel has been refactored out, just need list[ControlNetData]
return control_data
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=torch.zeros_like(noise, dtype=torch_dtype(unet.device)),
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback,
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
class LatentsToLatentsInvocation(TextToLatentsInvocation):
"""Generates latents using latents as base image."""
type: Literal["l2l"] = "l2l"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to use as a base image")
strength: float = Field(
default=0.7, ge=0, le=1,
description="The strength of the latents to use")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents"],
"type_hints": {
"model": "model",
"control": "control",
"cfg_scale": "number",
}
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
noise = context.services.latents.get(self.noise.latents_name)
latent = context.services.latents.get(self.latents.latents_name)
# Get the source node id (we are invoking the prepared node)
graph_execution_state = context.services.graph_execution_manager.get(
context.graph_execution_state_id)
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
def step_callback(state: PipelineIntermediateState):
self.dispatch_progress(context, source_node_id, state)
def _lora_loader():
for lora in self.unet.loras:
lora_info = context.services.model_manager.get_model(
**lora.dict(exclude={"weight"}))
yield (lora_info.context.model, lora.weight)
del lora_info
return
unet_info = context.services.model_manager.get_model(
**self.unet.unet.dict())
with ModelPatcher.apply_lora_unet(unet_info.context.model, _lora_loader()),\
unet_info as unet:
scheduler = get_scheduler(
context=context,
scheduler_info=self.unet.scheduler,
scheduler_name=self.scheduler,
)
pipeline = self.create_pipeline(unet, scheduler)
conditioning_data = self.get_conditioning_data(context, scheduler)
control_data = self.prep_control_data(
model=pipeline, context=context, control_input=self.control,
latents_shape=noise.shape,
# do_classifier_free_guidance=(self.cfg_scale >= 1.0))
do_classifier_free_guidance=True,
)
# TODO: Verify the noise is the right size
initial_latents = latent if self.strength < 1.0 else torch.zeros_like(
latent, device=unet.device, dtype=latent.dtype)
timesteps, _ = pipeline.get_img2img_timesteps(
self.steps,
self.strength,
device=unet.device,
)
result_latents, result_attention_map_saver = pipeline.latents_from_embeddings(
latents=initial_latents,
timesteps=timesteps,
noise=noise,
num_inference_steps=self.steps,
conditioning_data=conditioning_data,
control_data=control_data, # list[ControlNetData]
callback=step_callback
)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f'{context.graph_execution_state_id}__{self.id}'
context.services.latents.save(name, result_latents)
return build_latents_output(latents_name=name, latents=result_latents)
# Latent to image
class LatentsToImageInvocation(BaseInvocation):
"""Generates an image from latents."""
type: Literal["l2i"] = "l2i"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to generate an image from")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Decode latents by overlaping tiles(less memory consumption)")
metadata: Optional[CoreMetadata] = Field(default=None, description="Optional core metadata to be written to the image")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> ImageOutput:
latents = context.services.latents.get(self.latents.latents_name)
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
with vae_info as vae:
if self.tiled or context.services.configuration.tiled_decode:
vae.enable_tiling()
else:
vae.disable_tiling()
# clear memory as vae decode can request a lot
torch.cuda.empty_cache()
with torch.inference_mode():
# copied from diffusers pipeline
latents = latents / vae.config.scaling_factor
image = vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1) # denormalize
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
np_image = image.cpu().permute(0, 2, 3, 1).float().numpy()
image = VaeImageProcessor.numpy_to_pil(np_image)[0]
torch.cuda.empty_cache()
image_dto = context.services.images.create(
image=image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
metadata=self.metadata.dict() if self.metadata else None,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
LATENTS_INTERPOLATION_MODE = Literal["nearest", "linear",
"bilinear", "bicubic", "trilinear", "area", "nearest-exact"]
class ResizeLatentsInvocation(BaseInvocation):
"""Resizes latents to explicit width/height (in pixels). Provided dimensions are floor-divided by 8."""
type: Literal["lresize"] = "lresize"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to resize")
width: int = Field(
ge=64, multiple_of=8, description="The width to resize to (px)")
height: int = Field(
ge=64, multiple_of=8, description="The height to resize to (px)")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
resized_latents = torch.nn.functional.interpolate(
latents, size=(self.height // 8, self.width // 8),
mode=self.mode, antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ScaleLatentsInvocation(BaseInvocation):
"""Scales latents by a given factor."""
type: Literal["lscale"] = "lscale"
# Inputs
latents: Optional[LatentsField] = Field(
description="The latents to scale")
scale_factor: float = Field(
gt=0, description="The factor by which to scale the latents")
mode: LATENTS_INTERPOLATION_MODE = Field(
default="bilinear", description="The interpolation mode")
antialias: bool = Field(
default=False,
description="Whether or not to antialias (applied in bilinear and bicubic modes only)")
def invoke(self, context: InvocationContext) -> LatentsOutput:
latents = context.services.latents.get(self.latents.latents_name)
# resizing
resized_latents = torch.nn.functional.interpolate(
latents, scale_factor=self.scale_factor, mode=self.mode,
antialias=self.antialias
if self.mode in ["bilinear", "bicubic"] else False,)
# https://discuss.huggingface.co/t/memory-usage-by-later-pipeline-stages/23699
torch.cuda.empty_cache()
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, resized_latents)
context.services.latents.save(name, resized_latents)
return build_latents_output(latents_name=name, latents=resized_latents)
class ImageToLatentsInvocation(BaseInvocation):
"""Encodes an image into latents."""
type: Literal["i2l"] = "i2l"
# Inputs
image: Optional[ImageField] = Field(description="The image to encode")
vae: VaeField = Field(default=None, description="Vae submodel")
tiled: bool = Field(
default=False,
description="Encode latents by overlaping tiles(less memory consumption)")
# Schema customisation
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["latents", "image"],
},
}
@torch.no_grad()
def invoke(self, context: InvocationContext) -> LatentsOutput:
# image = context.services.images.get(
# self.image.image_type, self.image.image_name
# )
image = context.services.images.get_pil_image(self.image.image_name)
#vae_info = context.services.model_manager.get_model(**self.vae.vae.dict())
vae_info = context.services.model_manager.get_model(
**self.vae.vae.dict(),
)
image_tensor = image_resized_to_grid_as_tensor(image.convert("RGB"))
if image_tensor.dim() == 3:
image_tensor = einops.rearrange(image_tensor, "c h w -> 1 c h w")
with vae_info as vae:
if self.tiled:
vae.enable_tiling()
else:
vae.disable_tiling()
# non_noised_latents_from_image
image_tensor = image_tensor.to(device=vae.device, dtype=vae.dtype)
with torch.inference_mode():
image_tensor_dist = vae.encode(image_tensor).latent_dist
latents = image_tensor_dist.sample().to(
dtype=vae.dtype
) # FIXME: uses torch.randn. make reproducible!
latents = 0.18215 * latents
name = f"{context.graph_execution_state_id}__{self.id}"
# context.services.latents.set(name, latents)
context.services.latents.save(name, latents)
return build_latents_output(latents_name=name, latents=latents)