InvokeAI/invokeai/app/invocations/image.py
2023-07-23 16:24:34 -04:00

783 lines
26 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from typing import Literal, Optional
import numpy
from PIL import Image, ImageFilter, ImageOps, ImageChops
from pydantic import BaseModel, Field
from pathlib import Path
from typing import Union
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from ..models.image import ImageCategory, ImageField, ResourceOrigin
from .baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
InvocationContext,
InvocationConfig,
)
from invokeai.backend.util.devices import choose_torch_device
from invokeai.backend import SilenceWarnings
class PILInvocationConfig(BaseModel):
"""Helper class to provide all PIL invocations with additional config"""
class Config(InvocationConfig):
schema_extra = {
"ui": {
"tags": ["PIL", "image"],
},
}
class ImageOutput(BaseInvocationOutput):
"""Base class for invocations that output an image"""
# fmt: off
type: Literal["image_output"] = "image_output"
image: ImageField = Field(default=None, description="The output image")
width: int = Field(description="The width of the image in pixels")
height: int = Field(description="The height of the image in pixels")
# fmt: on
class Config:
schema_extra = {"required": ["type", "image", "width", "height"]}
class MaskOutput(BaseInvocationOutput):
"""Base class for invocations that output a mask"""
# fmt: off
type: Literal["mask"] = "mask"
mask: ImageField = Field(default=None, description="The output mask")
width: int = Field(description="The width of the mask in pixels")
height: int = Field(description="The height of the mask in pixels")
# fmt: on
class Config:
schema_extra = {
"required": [
"type",
"mask",
]
}
class LoadImageInvocation(BaseInvocation):
"""Load an image and provide it as output."""
# fmt: off
type: Literal["load_image"] = "load_image"
# Inputs
image: Optional[ImageField] = Field(
default=None, description="The image to load"
)
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Load Image",
"tags": ["image", "load"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
class ShowImageInvocation(BaseInvocation):
"""Displays a provided image, and passes it forward in the pipeline."""
type: Literal["show_image"] = "show_image"
# Inputs
image: Optional[ImageField] = Field(
default=None, description="The image to show"
)
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Show Image",
"tags": ["image", "show"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if image:
image.show()
# TODO: how to handle failure?
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
class ImageCropInvocation(BaseInvocation, PILInvocationConfig):
"""Crops an image to a specified box. The box can be outside of the image."""
# fmt: off
type: Literal["img_crop"] = "img_crop"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to crop")
x: int = Field(default=0, description="The left x coordinate of the crop rectangle")
y: int = Field(default=0, description="The top y coordinate of the crop rectangle")
width: int = Field(default=512, gt=0, description="The width of the crop rectangle")
height: int = Field(default=512, gt=0, description="The height of the crop rectangle")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Crop Image",
"tags": ["image", "crop"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_crop = Image.new(
mode="RGBA", size=(self.width, self.height), color=(0, 0, 0, 0)
)
image_crop.paste(image, (-self.x, -self.y))
image_dto = context.services.images.create(
image=image_crop,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImagePasteInvocation(BaseInvocation, PILInvocationConfig):
"""Pastes an image into another image."""
# fmt: off
type: Literal["img_paste"] = "img_paste"
# Inputs
base_image: Optional[ImageField] = Field(default=None, description="The base image")
image: Optional[ImageField] = Field(default=None, description="The image to paste")
mask: Optional[ImageField] = Field(default=None, description="The mask to use when pasting")
x: int = Field(default=0, description="The left x coordinate at which to paste the image")
y: int = Field(default=0, description="The top y coordinate at which to paste the image")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Paste Image",
"tags": ["image", "paste"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
base_image = context.services.images.get_pil_image(self.base_image.image_name)
image = context.services.images.get_pil_image(self.image.image_name)
mask = (
None
if self.mask is None
else ImageOps.invert(
context.services.images.get_pil_image(self.mask.image_name)
)
)
# TODO: probably shouldn't invert mask here... should user be required to do it?
min_x = min(0, self.x)
min_y = min(0, self.y)
max_x = max(base_image.width, image.width + self.x)
max_y = max(base_image.height, image.height + self.y)
new_image = Image.new(
mode="RGBA", size=(max_x - min_x, max_y - min_y), color=(0, 0, 0, 0)
)
new_image.paste(base_image, (abs(min_x), abs(min_y)))
new_image.paste(image, (max(0, self.x), max(0, self.y)), mask=mask)
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class MaskFromAlphaInvocation(BaseInvocation, PILInvocationConfig):
"""Extracts the alpha channel of an image as a mask."""
# fmt: off
type: Literal["tomask"] = "tomask"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to create the mask from")
invert: bool = Field(default=False, description="Whether or not to invert the mask")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Mask From Alpha",
"tags": ["image", "mask", "alpha"]
},
}
def invoke(self, context: InvocationContext) -> MaskOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_mask = image.split()[-1]
if self.invert:
image_mask = ImageOps.invert(image_mask)
image_dto = context.services.images.create(
image=image_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return MaskOutput(
mask=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageMultiplyInvocation(BaseInvocation, PILInvocationConfig):
"""Multiplies two images together using `PIL.ImageChops.multiply()`."""
# fmt: off
type: Literal["img_mul"] = "img_mul"
# Inputs
image1: Optional[ImageField] = Field(default=None, description="The first image to multiply")
image2: Optional[ImageField] = Field(default=None, description="The second image to multiply")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Multiply Images",
"tags": ["image", "multiply"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image1 = context.services.images.get_pil_image(self.image1.image_name)
image2 = context.services.images.get_pil_image(self.image2.image_name)
multiply_image = ImageChops.multiply(image1, image2)
image_dto = context.services.images.create(
image=multiply_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_CHANNELS = Literal["A", "R", "G", "B"]
class ImageChannelInvocation(BaseInvocation, PILInvocationConfig):
"""Gets a channel from an image."""
# fmt: off
type: Literal["img_chan"] = "img_chan"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to get the channel from")
channel: IMAGE_CHANNELS = Field(default="A", description="The channel to get")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Channel",
"tags": ["image", "channel"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
channel_image = image.getchannel(self.channel)
image_dto = context.services.images.create(
image=channel_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
IMAGE_MODES = Literal["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV", "I", "F"]
class ImageConvertInvocation(BaseInvocation, PILInvocationConfig):
"""Converts an image to a different mode."""
# fmt: off
type: Literal["img_conv"] = "img_conv"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to convert")
mode: IMAGE_MODES = Field(default="L", description="The mode to convert to")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Convert Image",
"tags": ["image", "convert"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
converted_image = image.convert(self.mode)
image_dto = context.services.images.create(
image=converted_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Blurs an image"""
# fmt: off
type: Literal["img_blur"] = "img_blur"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to blur")
radius: float = Field(default=8.0, ge=0, description="The blur radius")
blur_type: Literal["gaussian", "box"] = Field(default="gaussian", description="The type of blur")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Blur Image",
"tags": ["image", "blur"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
blur = (
ImageFilter.GaussianBlur(self.radius)
if self.blur_type == "gaussian"
else ImageFilter.BoxBlur(self.radius)
)
blur_image = image.filter(blur)
image_dto = context.services.images.create(
image=blur_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
PIL_RESAMPLING_MODES = Literal[
"nearest",
"box",
"bilinear",
"hamming",
"bicubic",
"lanczos",
]
PIL_RESAMPLING_MAP = {
"nearest": Image.Resampling.NEAREST,
"box": Image.Resampling.BOX,
"bilinear": Image.Resampling.BILINEAR,
"hamming": Image.Resampling.HAMMING,
"bicubic": Image.Resampling.BICUBIC,
"lanczos": Image.Resampling.LANCZOS,
}
class ImageResizeInvocation(BaseInvocation, PILInvocationConfig):
"""Resizes an image to specific dimensions"""
# fmt: off
type: Literal["img_resize"] = "img_resize"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to resize")
width: Union[int, None] = Field(ge=64, multiple_of=8, description="The width to resize to (px)")
height: Union[int, None] = Field(ge=64, multiple_of=8, description="The height to resize to (px)")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Resize Image",
"tags": ["image", "resize"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
resize_image = image.resize(
(self.width, self.height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageScaleInvocation(BaseInvocation, PILInvocationConfig):
"""Scales an image by a factor"""
# fmt: off
type: Literal["img_scale"] = "img_scale"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to scale")
scale_factor: Optional[float] = Field(default=2.0, gt=0, description="The factor by which to scale the image")
resample_mode: PIL_RESAMPLING_MODES = Field(default="bicubic", description="The resampling mode")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Scale Image",
"tags": ["image", "scale"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
resample_mode = PIL_RESAMPLING_MAP[self.resample_mode]
width = int(image.width * self.scale_factor)
height = int(image.height * self.scale_factor)
resize_image = image.resize(
(width, height),
resample=resample_mode,
)
image_dto = context.services.images.create(
image=resize_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["img_lerp"] = "img_lerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum output value")
max: int = Field(default=255, ge=0, le=255, description="The maximum output value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Linear Interpolation",
"tags": ["image", "linear", "interpolation", "lerp"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32) / 255
image_arr = image_arr * (self.max - self.min) + self.max
lerp_image = Image.fromarray(numpy.uint8(image_arr))
image_dto = context.services.images.create(
image=lerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageInverseLerpInvocation(BaseInvocation, PILInvocationConfig):
"""Inverse linear interpolation of all pixels of an image"""
# fmt: off
type: Literal["img_ilerp"] = "img_ilerp"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to lerp")
min: int = Field(default=0, ge=0, le=255, description="The minimum input value")
max: int = Field(default=255, ge=0, le=255, description="The maximum input value")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Image Inverse Linear Interpolation",
"tags": ["image", "linear", "interpolation", "inverse"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
image_arr = numpy.asarray(image, dtype=numpy.float32)
image_arr = (
numpy.minimum(
numpy.maximum(image_arr - self.min, 0) / float(self.max - self.min), 1
)
* 255
)
ilerp_image = Image.fromarray(numpy.uint8(image_arr))
image_dto = context.services.images.create(
image=ilerp_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
class ImageNSFWBlurInvocation(BaseInvocation, PILInvocationConfig):
"""Add blur to NSFW-flagged images"""
# fmt: off
type: Literal["img_nsfw"] = "img_nsfw"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
active: bool = Field(default=True, description="Whether the NSFW checker is active")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Blur NSFW Images",
"tags": ["image", "nsfw", "checker"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
if not self.active:
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
config = context.services.configuration
logger = context.services.logger
device = choose_torch_device()
logger.info("Running NSFW checker")
safety_checker = StableDiffusionSafetyChecker.from_pretrained(config.models_path / 'core/convert/stable-diffusion-safety-checker')
feature_extractor = AutoFeatureExtractor.from_pretrained(config.models_path / 'core/convert/stable-diffusion-safety-checker')
features = feature_extractor([image], return_tensors="pt")
features.to(device)
safety_checker.to(device)
x_image = numpy.array(image).astype(numpy.float32) / 255.0
x_image = x_image[None].transpose(0, 3, 1, 2)
with SilenceWarnings():
checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=features.pixel_values)
logger.info(f"NSFW scan result: {has_nsfw_concept[0]}")
if has_nsfw_concept[0]:
blurry_image = image.filter(filter=ImageFilter.GaussianBlur(radius=32))
caution = self._get_caution_img()
blurry_image.paste(caution,(0,0),caution)
image_dto = context.services.images.create(
image=blurry_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)
else:
return ImageOutput(
image=ImageField(image_name=self.image.image_name),
width=image.width,
height=image.height,
)
def _get_caution_img(self)->Image:
import invokeai.assets.web as web_assets
caution = Image.open(Path(web_assets.__path__[0]) / 'caution.png')
return caution.resize((caution.width // 2, caution.height //2))
class ImageWatermarkInvocation(BaseInvocation, PILInvocationConfig):
""" Add an invisible watermark to an image """
# fmt: off
type: Literal["img_watermark"] = "img_watermark"
# Inputs
image: Optional[ImageField] = Field(default=None, description="The image to check")
text: str = Field(default='InvokeAI', description="Watermark text")
# fmt: on
class Config(InvocationConfig):
schema_extra = {
"ui": {
"title": "Add Invisible Watermark",
"tags": ["image", "watermark", "invisible"]
},
}
def invoke(self, context: InvocationContext) -> ImageOutput:
import cv2
from imwatermark import WatermarkEncoder
image = context.services.images.get_pil_image(self.image.image_name)
bgr = cv2.cvtColor(numpy.array(image.convert("RGB")), cv2.COLOR_RGB2BGR)
wm = self.text
encoder = WatermarkEncoder()
encoder.set_watermark('bytes', wm.encode('utf-8'))
bgr_encoded = encoder.encode(bgr, 'dwtDct')
new_image = Image.fromarray(
cv2.cvtColor(bgr_encoded, cv2.COLOR_BGR2RGB)
).convert("RGBA")
image_dto = context.services.images.create(
image=new_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)