InvokeAI/invokeai/app/invocations/ip_adapter.py
2024-02-29 13:16:37 -05:00

111 lines
4.7 KiB
Python

from builtins import float
from typing import List, Union
from pydantic import BaseModel, Field, field_validator, model_validator
from typing_extensions import Self
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
BaseInvocationOutput,
invocation,
invocation_output,
)
from invokeai.app.invocations.fields import FieldDescriptions, Input, InputField, OutputField
from invokeai.app.invocations.primitives import ImageField
from invokeai.app.invocations.util import validate_begin_end_step, validate_weights
from invokeai.app.services.shared.invocation_context import InvocationContext
from invokeai.backend.model_management.models.base import BaseModelType, ModelType
from invokeai.backend.model_management.models.ip_adapter import get_ip_adapter_image_encoder_model_id
# LS: Consider moving these two classes into model.py
class IPAdapterModelField(BaseModel):
key: str = Field(description="Key to the IP-Adapter model")
class CLIPVisionModelField(BaseModel):
key: str = Field(description="Key to the CLIP Vision image encoder model")
class IPAdapterField(BaseModel):
image: Union[ImageField, List[ImageField]] = Field(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = Field(description="The IP-Adapter model to use.")
image_encoder_model: CLIPVisionModelField = Field(description="The name of the CLIP image encoder model.")
weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
begin_step_percent: float = Field(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = Field(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
@invocation_output("ip_adapter_output")
class IPAdapterOutput(BaseInvocationOutput):
# Outputs
ip_adapter: IPAdapterField = OutputField(description=FieldDescriptions.ip_adapter, title="IP-Adapter")
@invocation("ip_adapter", title="IP-Adapter", tags=["ip_adapter", "control"], category="ip_adapter", version="1.1.2")
class IPAdapterInvocation(BaseInvocation):
"""Collects IP-Adapter info to pass to other nodes."""
# Inputs
image: Union[ImageField, List[ImageField]] = InputField(description="The IP-Adapter image prompt(s).")
ip_adapter_model: IPAdapterModelField = InputField(
description="The IP-Adapter model.", title="IP-Adapter Model", input=Input.Direct, ui_order=-1
)
weight: Union[float, List[float]] = InputField(
default=1, description="The weight given to the IP-Adapter", title="Weight"
)
begin_step_percent: float = InputField(
default=0, ge=0, le=1, description="When the IP-Adapter is first applied (% of total steps)"
)
end_step_percent: float = InputField(
default=1, ge=0, le=1, description="When the IP-Adapter is last applied (% of total steps)"
)
@field_validator("weight")
@classmethod
def validate_ip_adapter_weight(cls, v: float) -> float:
validate_weights(v)
return v
@model_validator(mode="after")
def validate_begin_end_step_percent(self) -> Self:
validate_begin_end_step(self.begin_step_percent, self.end_step_percent)
return self
def invoke(self, context: InvocationContext) -> IPAdapterOutput:
# Lookup the CLIP Vision encoder that is intended to be used with the IP-Adapter model.
ip_adapter_info = context.services.model_manager.store.get_model(self.ip_adapter_model.key)
image_encoder_model_id = ip_adapter_info.image_encoder_model_id
image_encoder_model_name = image_encoder_model_id.split("/")[-1].strip()
image_encoder_models = context.services.model_manager.store.search_by_attr(
model_name=image_encoder_model_name, base_model=BaseModelType.Any, model_type=ModelType.CLIPVision
)
assert len(image_encoder_models) == 1
image_encoder_model = CLIPVisionModelField(key=image_encoder_models[0].key)
return IPAdapterOutput(
ip_adapter=IPAdapterField(
image=self.image,
ip_adapter_model=self.ip_adapter_model,
image_encoder_model=image_encoder_model,
weight=self.weight,
begin_step_percent=self.begin_step_percent,
end_step_percent=self.end_step_percent,
),
)