mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
5f498e10bd
* feat(ui): add axios client generator and simple example * fix(ui): update client & nodes test code w/ new Edge type * chore(ui): organize generated files * chore(ui): update .eslintignore, .prettierignore * chore(ui): update openapi.json * feat(backend): fixes for nodes/generator * feat(ui): generate object args for api client * feat(ui): more nodes api prototyping * feat(ui): nodes cancel * chore(ui): regenerate api client * fix(ui): disable OG web server socket connection * fix(ui): fix scrollbar styles typing and prop just noticed the typo, and made the types stronger. * feat(ui): add socketio types * feat(ui): wip nodes - extract api client method arg types instead of manually declaring them - update example to display images - general tidy up * start building out node translations from frontend state and add notes about missing features * use reference to sampler_name * use reference to sampler_name * add optional apiUrl prop * feat(ui): start hooking up dynamic txt2img node generation, create middleware for session invocation * feat(ui): write separate nodes socket layer, txt2img generating and rendering w single node * feat(ui): img2img implementation * feat(ui): get intermediate images working but types are stubbed out * chore(ui): add support for package mode * feat(ui): add nodes mode script * feat(ui): handle random seeds * fix(ui): fix middleware types * feat(ui): add rtk action type guard * feat(ui): disable NodeAPITest This was polluting the network/socket logs. * feat(ui): fix parameters panel border color This commit should be elsewhere but I don't want to break my flow * feat(ui): make thunk types more consistent * feat(ui): add type guards for outputs * feat(ui): load images on socket connect Rudimentary * chore(ui): bump redux-toolkit * docs(ui): update readme * chore(ui): regenerate api client * chore(ui): add typescript as dev dependency I am having trouble with TS versions after vscode updated and now uses TS 5. `madge` has installed 3.9.10 and for whatever reason my vscode wants to use that. Manually specifying 4.9.5 and then setting vscode to use that as the workspace TS fixes the issue. * feat(ui): begin migrating gallery to nodes Along the way, migrate to use RTK `createEntityAdapter` for gallery images, and separate `results` and `uploads` into separate slices. Much cleaner this way. * feat(ui): clean up & comment results slice * fix(ui): separate thunk for initial gallery load so it properly gets index 0 * feat(ui): POST upload working * fix(ui): restore removed type * feat(ui): patch api generation for headers access * chore(ui): regenerate api * feat(ui): wip gallery migration * feat(ui): wip gallery migration * chore(ui): regenerate api * feat(ui): wip refactor socket events * feat(ui): disable panels based on app props * feat(ui): invert logic to be disabled * disable panels when app mounts * feat(ui): add support to disableTabs * docs(ui): organise and update docs * lang(ui): add toast strings * feat(ui): wip events, comments, and general refactoring * feat(ui): add optional token for auth * feat(ui): export StatusIndicator and ModelSelect for header use * feat(ui) working on making socket URL dynamic * feat(ui): dynamic middleware loading * feat(ui): prep for socket jwt * feat(ui): migrate cancelation also updated action names to be event-like instead of declaration-like sorry, i was scattered and this commit has a lot of unrelated stuff in it. * fix(ui): fix img2img type * chore(ui): regenerate api client * feat(ui): improve InvocationCompleteEvent types * feat(ui): increase StatusIndicator font size * fix(ui): fix middleware order for multi-node graphs * feat(ui): add exampleGraphs object w/ iterations example * feat(ui): generate iterations graph * feat(ui): update ModelSelect for nodes API * feat(ui): add hi-res functionality for txt2img generations * feat(ui): "subscribe" to particular nodes feels like a dirty hack but oh well it works * feat(ui): first steps to node editor ui * fix(ui): disable event subscription it is not fully baked just yet * feat(ui): wip node editor * feat(ui): remove extraneous field types * feat(ui): nodes before deleting stuff * feat(ui): cleanup nodes ui stuff * feat(ui): hook up nodes to redux * fix(ui): fix handle * fix(ui): add basic node edges & connection validation * feat(ui): add connection validation styling * feat(ui): increase edge width * feat(ui): it blends * feat(ui): wip model handling and graph topology validation * feat(ui): validation connections w/ graphlib * docs(ui): update nodes doc * feat(ui): wip node editor * chore(ui): rebuild api, update types * add redux-dynamic-middlewares as a dependency * feat(ui): add url host transformation * feat(ui): handle already-connected fields * feat(ui): rewrite SqliteItemStore in sqlalchemy * fix(ui): fix sqlalchemy dynamic model instantiation * feat(ui, nodes): metadata wip * feat(ui, nodes): models * feat(ui, nodes): more metadata wip * feat(ui): wip range/iterate * fix(nodes): fix sqlite typing * feat(ui): export new type for invoke component * tests(nodes): fix test instantiation of ImageField * feat(nodes): fix LoadImageInvocation * feat(nodes): add `title` ui hint * feat(nodes): make ImageField attrs optional * feat(ui): wip nodes etc * feat(nodes): roll back sqlalchemy * fix(nodes): partially address feedback * fix(backend): roll back changes to pngwriter * feat(nodes): wip address metadata feedback * feat(nodes): add seeded rng to RandomRange * feat(nodes): address feedback * feat(nodes): move GET images error handling to DiskImageStorage * feat(nodes): move GET images error handling to DiskImageStorage * fix(nodes): fix image output schema customization * feat(ui): img2img/txt2img -> linear - remove txt2img and img2img tabs - add linear tab - add initial image selection to linear parameters accordion * feat(ui): tidy graph builders * feat(ui): tidy misc * feat(ui): improve invocation union types * feat(ui): wip metadata viewer recall * feat(ui): move fonts to normal deps * feat(nodes): fix broken upload * feat(nodes): add metadata module + tests, thumbnails - `MetadataModule` is stateless and needed in places where the `InvocationContext` is not available, so have not made it a `service` - Handles loading/parsing/building metadata, and creating png info objects - added tests for MetadataModule - Lifted thumbnail stuff to util * fix(nodes): revert change to RandomRangeInvocation * feat(nodes): address feedback - make metadata a service - rip out pydantic validation, implement metadata parsing as simple functions - update tests - address other minor feedback items * fix(nodes): fix other tests * fix(nodes): add metadata service to cli * fix(nodes): fix latents/image field parsing * feat(nodes): customise LatentsField schema * feat(nodes): move metadata parsing to frontend * fix(nodes): fix metadata test --------- Co-authored-by: maryhipp <maryhipp@gmail.com> Co-authored-by: Mary Hipp <maryhipp@Marys-MacBook-Air.local>
282 lines
10 KiB
Python
282 lines
10 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
from functools import partial
|
|
from typing import Literal, Optional, Union
|
|
|
|
import numpy as np
|
|
from torch import Tensor
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from invokeai.app.models.image import ImageField, ImageType
|
|
from invokeai.app.invocations.util.choose_model import choose_model
|
|
from .baseinvocation import BaseInvocation, InvocationContext, InvocationConfig
|
|
from .image import ImageOutput, build_image_output
|
|
from ...backend.generator import Txt2Img, Img2Img, Inpaint, InvokeAIGenerator
|
|
from ...backend.stable_diffusion import PipelineIntermediateState
|
|
from ..util.step_callback import stable_diffusion_step_callback
|
|
|
|
SAMPLER_NAME_VALUES = Literal[tuple(InvokeAIGenerator.schedulers())]
|
|
|
|
|
|
class SDImageInvocation(BaseModel):
|
|
"""Helper class to provide all Stable Diffusion raster image invocations with additional config"""
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"tags": ["stable-diffusion", "image"],
|
|
"type_hints": {
|
|
"model": "model",
|
|
},
|
|
},
|
|
}
|
|
|
|
|
|
# Text to image
|
|
class TextToImageInvocation(BaseInvocation, SDImageInvocation):
|
|
"""Generates an image using text2img."""
|
|
|
|
type: Literal["txt2img"] = "txt2img"
|
|
|
|
# Inputs
|
|
# TODO: consider making prompt optional to enable providing prompt through a link
|
|
# fmt: off
|
|
prompt: Optional[str] = Field(description="The prompt to generate an image from")
|
|
seed: int = Field(default=-1,ge=-1, le=np.iinfo(np.uint32).max, description="The seed to use (-1 for a random seed)", )
|
|
steps: int = Field(default=10, gt=0, description="The number of steps to use to generate the image")
|
|
width: int = Field(default=512, multiple_of=64, gt=0, description="The width of the resulting image", )
|
|
height: int = Field(default=512, multiple_of=64, gt=0, description="The height of the resulting image", )
|
|
cfg_scale: float = Field(default=7.5, gt=0, description="The Classifier-Free Guidance, higher values may result in a result closer to the prompt", )
|
|
scheduler: SAMPLER_NAME_VALUES = Field(default="k_lms", description="The scheduler to use" )
|
|
seamless: bool = Field(default=False, description="Whether or not to generate an image that can tile without seams", )
|
|
model: str = Field(default="", description="The model to use (currently ignored)")
|
|
progress_images: bool = Field(default=False, description="Whether or not to produce progress images during generation", )
|
|
# fmt: on
|
|
|
|
# TODO: pass this an emitter method or something? or a session for dispatching?
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Txt2Img(model).generate(
|
|
prompt=self.prompt,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generate_output = next(outputs)
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(
|
|
image_type, image_name, generate_output.image, metadata
|
|
)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=generate_output.image,
|
|
)
|
|
|
|
|
|
class ImageToImageInvocation(TextToImageInvocation):
|
|
"""Generates an image using img2img."""
|
|
|
|
type: Literal["img2img"] = "img2img"
|
|
|
|
# Inputs
|
|
image: Union[ImageField, None] = Field(description="The input image")
|
|
strength: float = Field(
|
|
default=0.75, gt=0, le=1, description="The strength of the original image"
|
|
)
|
|
fit: bool = Field(
|
|
default=True,
|
|
description="Whether or not the result should be fit to the aspect ratio of the input image",
|
|
)
|
|
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = (
|
|
None
|
|
if self.image is None
|
|
else context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
)
|
|
mask = None
|
|
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Img2Img(model).generate(
|
|
prompt=self.prompt,
|
|
init_image=image,
|
|
init_mask=mask,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt", "image", "mask"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generator_output = next(outputs)
|
|
|
|
result_image = generator_output.image
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, result_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=result_image,
|
|
)
|
|
|
|
|
|
class InpaintInvocation(ImageToImageInvocation):
|
|
"""Generates an image using inpaint."""
|
|
|
|
type: Literal["inpaint"] = "inpaint"
|
|
|
|
# Inputs
|
|
mask: Union[ImageField, None] = Field(description="The mask")
|
|
inpaint_replace: float = Field(
|
|
default=0.0,
|
|
ge=0.0,
|
|
le=1.0,
|
|
description="The amount by which to replace masked areas with latent noise",
|
|
)
|
|
|
|
def dispatch_progress(
|
|
self,
|
|
context: InvocationContext,
|
|
source_node_id: str,
|
|
intermediate_state: PipelineIntermediateState,
|
|
) -> None:
|
|
stable_diffusion_step_callback(
|
|
context=context,
|
|
intermediate_state=intermediate_state,
|
|
node=self.dict(),
|
|
source_node_id=source_node_id,
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
image = (
|
|
None
|
|
if self.image is None
|
|
else context.services.images.get(
|
|
self.image.image_type, self.image.image_name
|
|
)
|
|
)
|
|
mask = (
|
|
None
|
|
if self.mask is None
|
|
else context.services.images.get(self.mask.image_type, self.mask.image_name)
|
|
)
|
|
|
|
# Handle invalid model parameter
|
|
model = choose_model(context.services.model_manager, self.model)
|
|
|
|
# Get the source node id (we are invoking the prepared node)
|
|
graph_execution_state = context.services.graph_execution_manager.get(
|
|
context.graph_execution_state_id
|
|
)
|
|
source_node_id = graph_execution_state.prepared_source_mapping[self.id]
|
|
|
|
outputs = Inpaint(model).generate(
|
|
prompt=self.prompt,
|
|
init_img=image,
|
|
init_mask=mask,
|
|
step_callback=partial(self.dispatch_progress, context, source_node_id),
|
|
**self.dict(
|
|
exclude={"prompt", "image", "mask"}
|
|
), # Shorthand for passing all of the parameters above manually
|
|
)
|
|
|
|
# Outputs is an infinite iterator that will return a new InvokeAIGeneratorOutput object
|
|
# each time it is called. We only need the first one.
|
|
generator_output = next(outputs)
|
|
|
|
result_image = generator_output.image
|
|
|
|
# Results are image and seed, unwrap for now and ignore the seed
|
|
# TODO: pre-seed?
|
|
# TODO: can this return multiple results? Should it?
|
|
image_type = ImageType.RESULT
|
|
image_name = context.services.images.create_name(
|
|
context.graph_execution_state_id, self.id
|
|
)
|
|
|
|
metadata = context.services.metadata.build_metadata(
|
|
session_id=context.graph_execution_state_id, node=self
|
|
)
|
|
|
|
context.services.images.save(image_type, image_name, result_image, metadata)
|
|
return build_image_output(
|
|
image_type=image_type,
|
|
image_name=image_name,
|
|
image=result_image,
|
|
)
|