mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
260 lines
11 KiB
Python
260 lines
11 KiB
Python
from pathlib import Path
|
|
from typing import Literal
|
|
from pydantic import Field
|
|
|
|
import accelerate
|
|
import torch
|
|
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel
|
|
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline
|
|
from invokeai.app.invocations.model import ModelIdentifierField
|
|
from optimum.quanto import qfloat8
|
|
from PIL import Image
|
|
from safetensors.torch import load_file
|
|
from transformers.models.auto import AutoModelForTextEncoding
|
|
|
|
from invokeai.app.invocations.baseinvocation import BaseInvocation, invocation
|
|
from invokeai.app.invocations.fields import (
|
|
ConditioningField,
|
|
FieldDescriptions,
|
|
Input,
|
|
InputField,
|
|
WithBoard,
|
|
WithMetadata,
|
|
UIType,
|
|
)
|
|
from invokeai.app.invocations.primitives import ImageOutput
|
|
from invokeai.app.services.shared.invocation_context import InvocationContext
|
|
from invokeai.backend.quantization.bnb_nf4 import quantize_model_nf4
|
|
from invokeai.backend.quantization.fast_quantized_diffusion_model import FastQuantizedDiffusersModel
|
|
from invokeai.backend.quantization.fast_quantized_transformers_model import FastQuantizedTransformersModel
|
|
from invokeai.backend.stable_diffusion.diffusion.conditioning_data import FLUXConditioningInfo
|
|
from invokeai.backend.util.devices import TorchDevice
|
|
|
|
TFluxModelKeys = Literal["flux-schnell"]
|
|
FLUX_MODELS: dict[TFluxModelKeys, str] = {"flux-schnell": "black-forest-labs/FLUX.1-schnell"}
|
|
|
|
|
|
class QuantizedFluxTransformer2DModel(FastQuantizedDiffusersModel):
|
|
base_class = FluxTransformer2DModel
|
|
|
|
|
|
class QuantizedModelForTextEncoding(FastQuantizedTransformersModel):
|
|
auto_class = AutoModelForTextEncoding
|
|
|
|
|
|
@invocation(
|
|
"flux_text_to_image",
|
|
title="FLUX Text to Image",
|
|
tags=["image"],
|
|
category="image",
|
|
version="1.0.0",
|
|
)
|
|
class FluxTextToImageInvocation(BaseInvocation, WithMetadata, WithBoard):
|
|
"""Text-to-image generation using a FLUX model."""
|
|
|
|
flux_model: ModelIdentifierField = InputField(
|
|
description="The Flux model",
|
|
input=Input.Any,
|
|
ui_type=UIType.FluxMainModel
|
|
)
|
|
model: TFluxModelKeys = InputField(description="The FLUX model to use for text-to-image generation.")
|
|
quantization_type: Literal["raw", "NF4", "llm_int8"] = InputField(
|
|
default="raw", description="The type of quantization to use for the transformer model."
|
|
)
|
|
use_8bit: bool = InputField(
|
|
default=False, description="Whether to quantize the transformer model to 8-bit precision."
|
|
)
|
|
positive_text_conditioning: ConditioningField = InputField(
|
|
description=FieldDescriptions.positive_cond, input=Input.Connection
|
|
)
|
|
width: int = InputField(default=1024, multiple_of=16, description="Width of the generated image.")
|
|
height: int = InputField(default=1024, multiple_of=16, description="Height of the generated image.")
|
|
num_steps: int = InputField(default=4, description="Number of diffusion steps.")
|
|
guidance: float = InputField(
|
|
default=4.0,
|
|
description="The guidance strength. Higher values adhere more strictly to the prompt, and will produce less diverse images.",
|
|
)
|
|
seed: int = InputField(default=0, description="Randomness seed for reproducibility.")
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
# model_path = context.models.download_and_cache_model(FLUX_MODELS[self.model])
|
|
flux_transformer_path = context.models.download_and_cache_model(
|
|
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/flux1-schnell.safetensors"
|
|
)
|
|
flux_ae_path = context.models.download_and_cache_model(
|
|
"https://huggingface.co/black-forest-labs/FLUX.1-schnell/resolve/main/ae.safetensors"
|
|
)
|
|
|
|
# Load the conditioning data.
|
|
cond_data = context.conditioning.load(self.positive_text_conditioning.conditioning_name)
|
|
assert len(cond_data.conditionings) == 1
|
|
flux_conditioning = cond_data.conditionings[0]
|
|
assert isinstance(flux_conditioning, FLUXConditioningInfo)
|
|
|
|
latents = self._run_diffusion(
|
|
context, flux_transformer_path, flux_conditioning.clip_embeds, flux_conditioning.t5_embeds
|
|
)
|
|
image = self._run_vae_decoding(context, flux_ae_path, latents)
|
|
image_dto = context.images.save(image=image)
|
|
return ImageOutput.build(image_dto)
|
|
|
|
def _run_diffusion(
|
|
self,
|
|
context: InvocationContext,
|
|
flux_transformer_path: Path,
|
|
clip_embeddings: torch.Tensor,
|
|
t5_embeddings: torch.Tensor,
|
|
):
|
|
inference_dtype = TorchDevice.choose_torch_dtype()
|
|
|
|
# Prepare input noise.
|
|
# TODO(ryand): Does the seed behave the same on different devices? Should we re-implement this to always use a
|
|
# CPU RNG?
|
|
x = get_noise(
|
|
num_samples=1,
|
|
height=self.height,
|
|
width=self.width,
|
|
device=TorchDevice.choose_torch_device(),
|
|
dtype=inference_dtype,
|
|
seed=self.seed,
|
|
)
|
|
|
|
img, img_ids = self._prepare_latent_img_patches(x)
|
|
|
|
# HACK(ryand): Find a better way to determine if this is a schnell model or not.
|
|
is_schnell = "shnell" in str(flux_transformer_path)
|
|
timesteps = get_schedule(
|
|
num_steps=self.num_steps,
|
|
image_seq_len=img.shape[1],
|
|
shift=not is_schnell,
|
|
)
|
|
|
|
bs, t5_seq_len, _ = t5_embeddings.shape
|
|
txt_ids = torch.zeros(bs, t5_seq_len, 3, dtype=inference_dtype, device=TorchDevice.choose_torch_device())
|
|
|
|
# HACK(ryand): Manually empty the cache. Currently we don't check the size of the model before loading it from
|
|
# disk. Since the transformer model is large (24GB), there's a good chance that it will OOM on 32GB RAM systems
|
|
# if the cache is not empty.
|
|
context.models._services.model_manager.load.ram_cache.make_room(24 * 2**30)
|
|
|
|
with context.models.load_local_model(
|
|
model_path=flux_transformer_path, loader=self._load_flux_transformer
|
|
) as transformer:
|
|
assert isinstance(transformer, Flux)
|
|
|
|
x = denoise(
|
|
model=transformer,
|
|
img=img,
|
|
img_ids=img_ids,
|
|
txt=t5_embeddings,
|
|
txt_ids=txt_ids,
|
|
vec=clip_embeddings,
|
|
timesteps=timesteps,
|
|
guidance=self.guidance,
|
|
)
|
|
|
|
x = unpack(x.float(), self.height, self.width)
|
|
|
|
return x
|
|
|
|
def _prepare_latent_img_patches(self, latent_img: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
|
"""Convert an input image in latent space to patches for diffusion.
|
|
|
|
This implementation was extracted from:
|
|
https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/sampling.py#L32
|
|
|
|
Returns:
|
|
tuple[Tensor, Tensor]: (img, img_ids), as defined in the original flux repo.
|
|
"""
|
|
bs, c, h, w = latent_img.shape
|
|
|
|
# Pixel unshuffle with a scale of 2, and flatten the height/width dimensions to get an array of patches.
|
|
img = rearrange(latent_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
|
if img.shape[0] == 1 and bs > 1:
|
|
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
|
|
|
# Generate patch position ids.
|
|
img_ids = torch.zeros(h // 2, w // 2, 3)
|
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
|
|
return img, img_ids
|
|
|
|
def _run_vae_decoding(
|
|
self,
|
|
context: InvocationContext,
|
|
flux_ae_path: Path,
|
|
latents: torch.Tensor,
|
|
) -> Image.Image:
|
|
with context.models.load_local_model(model_path=flux_ae_path, loader=self._load_flux_vae) as vae:
|
|
assert isinstance(vae, AutoEncoder)
|
|
# TODO(ryand): Test that this works with both float16 and bfloat16.
|
|
with torch.autocast(device_type=latents.device.type, dtype=TorchDevice.choose_torch_dtype()):
|
|
img = vae.decode(latents)
|
|
|
|
img.clamp(-1, 1)
|
|
img = rearrange(img[0], "c h w -> h w c")
|
|
img_pil = Image.fromarray((127.5 * (img + 1.0)).byte().cpu().numpy())
|
|
|
|
return img_pil
|
|
|
|
def _load_flux_transformer(self, path: Path) -> FluxTransformer2DModel:
|
|
inference_dtype = TorchDevice.choose_torch_dtype()
|
|
if self.quantization_type == "raw":
|
|
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
|
params = flux_configs["flux-schnell"].params
|
|
|
|
# Initialize the model on the "meta" device.
|
|
with accelerate.init_empty_weights():
|
|
model = Flux(params).to(inference_dtype)
|
|
|
|
state_dict = load_file(path)
|
|
# TODO(ryand): Cast the state_dict to the appropriate dtype?
|
|
model.load_state_dict(state_dict, strict=True, assign=True)
|
|
elif self.quantization_type == "NF4":
|
|
model_path = path.parent / "bnb_nf4.safetensors"
|
|
|
|
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
|
params = flux_configs["flux-schnell"].params
|
|
# Initialize the model on the "meta" device.
|
|
with accelerate.init_empty_weights():
|
|
model = Flux(params)
|
|
model = quantize_model_nf4(model, modules_to_not_convert=set(), compute_dtype=torch.bfloat16)
|
|
|
|
# TODO(ryand): Right now, some of the weights are loaded in bfloat16. Think about how best to handle
|
|
# this on GPUs without bfloat16 support.
|
|
state_dict = load_file(model_path)
|
|
model.load_state_dict(state_dict, strict=True, assign=True)
|
|
|
|
elif self.quantization_type == "llm_int8":
|
|
raise NotImplementedError("LLM int8 quantization is not yet supported.")
|
|
# model_config = FluxTransformer2DModel.load_config(path, local_files_only=True)
|
|
# with accelerate.init_empty_weights():
|
|
# empty_model = FluxTransformer2DModel.from_config(model_config)
|
|
# assert isinstance(empty_model, FluxTransformer2DModel)
|
|
# model_int8_path = path / "bnb_llm_int8"
|
|
# assert model_int8_path.exists()
|
|
# with accelerate.init_empty_weights():
|
|
# model = quantize_model_llm_int8(empty_model, modules_to_not_convert=set())
|
|
|
|
# sd = load_file(model_int8_path / "model.safetensors")
|
|
# model.load_state_dict(sd, strict=True, assign=True)
|
|
else:
|
|
raise ValueError(f"Unsupported quantization type: {self.quantization_type}")
|
|
|
|
assert isinstance(model, FluxTransformer2DModel)
|
|
return model
|
|
|
|
@staticmethod
|
|
def _load_flux_vae(path: Path) -> AutoEncoder:
|
|
# TODO(ryand): Determine if this is a schnell model or a dev model and load the appropriate config.
|
|
ae_params = flux_configs["flux1-schnell"].ae_params
|
|
with accelerate.init_empty_weights():
|
|
ae = AutoEncoder(ae_params)
|
|
|
|
state_dict = load_file(path)
|
|
ae.load_state_dict(state_dict, strict=True, assign=True)
|
|
return ae
|