mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
104 lines
3.5 KiB
Python
104 lines
3.5 KiB
Python
from __future__ import annotations
|
|
|
|
from contextlib import contextmanager
|
|
from typing import List, Union
|
|
|
|
import torch.nn as nn
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
|
|
|
def _conv_forward_asymmetric(self, input, weight, bias):
|
|
"""
|
|
Patch for Conv2d._conv_forward that supports asymmetric padding
|
|
"""
|
|
working = nn.functional.pad(input, self.asymmetric_padding["x"], mode=self.asymmetric_padding_mode["x"])
|
|
working = nn.functional.pad(working, self.asymmetric_padding["y"], mode=self.asymmetric_padding_mode["y"])
|
|
return nn.functional.conv2d(
|
|
working,
|
|
weight,
|
|
bias,
|
|
self.stride,
|
|
nn.modules.utils._pair(0),
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
|
|
|
|
@contextmanager
|
|
def set_seamless(model: Union[UNet2DConditionModel, AutoencoderKL], seamless_axes: List[str]):
|
|
try:
|
|
to_restore = []
|
|
|
|
for m_name, m in model.named_modules():
|
|
if isinstance(model, UNet2DConditionModel):
|
|
if ".attentions." in m_name:
|
|
continue
|
|
|
|
if ".resnets." in m_name:
|
|
if ".conv2" in m_name:
|
|
continue
|
|
if ".conv_shortcut" in m_name:
|
|
continue
|
|
|
|
"""
|
|
if isinstance(model, UNet2DConditionModel):
|
|
if False and ".upsamplers." in m_name:
|
|
continue
|
|
|
|
if False and ".downsamplers." in m_name:
|
|
continue
|
|
|
|
if True and ".resnets." in m_name:
|
|
if True and ".conv1" in m_name:
|
|
if False and "down_blocks" in m_name:
|
|
continue
|
|
if False and "mid_block" in m_name:
|
|
continue
|
|
if False and "up_blocks" in m_name:
|
|
continue
|
|
|
|
if True and ".conv2" in m_name:
|
|
continue
|
|
|
|
if True and ".conv_shortcut" in m_name:
|
|
continue
|
|
|
|
if True and ".attentions." in m_name:
|
|
continue
|
|
|
|
if False and m_name in ["conv_in", "conv_out"]:
|
|
continue
|
|
"""
|
|
|
|
if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
|
|
print(f"applied - {m_name}")
|
|
m.asymmetric_padding_mode = {}
|
|
m.asymmetric_padding = {}
|
|
m.asymmetric_padding_mode["x"] = "circular" if ("x" in seamless_axes) else "constant"
|
|
m.asymmetric_padding["x"] = (
|
|
m._reversed_padding_repeated_twice[0],
|
|
m._reversed_padding_repeated_twice[1],
|
|
0,
|
|
0,
|
|
)
|
|
m.asymmetric_padding_mode["y"] = "circular" if ("y" in seamless_axes) else "constant"
|
|
m.asymmetric_padding["y"] = (
|
|
0,
|
|
0,
|
|
m._reversed_padding_repeated_twice[2],
|
|
m._reversed_padding_repeated_twice[3],
|
|
)
|
|
|
|
to_restore.append((m, m._conv_forward))
|
|
m._conv_forward = _conv_forward_asymmetric.__get__(m, nn.Conv2d)
|
|
|
|
yield
|
|
|
|
finally:
|
|
for module, orig_conv_forward in to_restore:
|
|
module._conv_forward = orig_conv_forward
|
|
if hasattr(m, "asymmetric_padding_mode"):
|
|
del m.asymmetric_padding_mode
|
|
if hasattr(m, "asymmetric_padding"):
|
|
del m.asymmetric_padding
|