mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
275 lines
11 KiB
Python
275 lines
11 KiB
Python
# Copyright (c) 2023 Kyle Schouviller (https://github.com/kyle0654) and 2023 Kent Keirsey (https://github.com/hipsterusername)
|
|
|
|
from typing import Literal, Optional, Union
|
|
|
|
from fastapi import Query, Body, Path
|
|
from fastapi.routing import APIRouter, HTTPException
|
|
from pydantic import BaseModel, Field, parse_obj_as
|
|
from ..dependencies import ApiDependencies
|
|
from invokeai.backend import BaseModelType, ModelType
|
|
from invokeai.backend.model_management import AddModelResult
|
|
from invokeai.backend.model_management.models import MODEL_CONFIGS, OPENAPI_MODEL_CONFIGS, SchedulerPredictionType
|
|
|
|
models_router = APIRouter(prefix="/v1/models", tags=["models"])
|
|
|
|
class CreateModelResponse(BaseModel):
|
|
model_name: str = Field(description="The name of the new model")
|
|
info: Union[tuple(MODEL_CONFIGS)] = Field(description="The model info")
|
|
status: str = Field(description="The status of the API response")
|
|
|
|
class ImportModelResponse(BaseModel):
|
|
name: str = Field(description="The name of the imported model")
|
|
info: AddModelResult = Field(description="The model info")
|
|
status: str = Field(description="The status of the API response")
|
|
|
|
class ConvertModelResponse(BaseModel):
|
|
name: str = Field(description="The name of the imported model")
|
|
info: AddModelResult = Field(description="The model info")
|
|
status: str = Field(description="The status of the API response")
|
|
|
|
class ModelsList(BaseModel):
|
|
models: list[Union[tuple(OPENAPI_MODEL_CONFIGS)]]
|
|
|
|
@models_router.get(
|
|
"/{base_model}/{model_type}",
|
|
operation_id="list_models",
|
|
responses={200: {"model": ModelsList }},
|
|
)
|
|
async def list_models(
|
|
base_model: Optional[BaseModelType] = Path(
|
|
default=None, description="Base model"
|
|
),
|
|
model_type: Optional[ModelType] = Path(
|
|
default=None, description="The type of model to get"
|
|
),
|
|
) -> ModelsList:
|
|
"""Gets a list of models"""
|
|
models_raw = ApiDependencies.invoker.services.model_manager.list_models(base_model, model_type)
|
|
models = parse_obj_as(ModelsList, { "models": models_raw })
|
|
return models
|
|
|
|
@models_router.post(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="update_model",
|
|
responses={200: {"status": "success"}},
|
|
)
|
|
async def update_model(
|
|
base_model: BaseModelType = Path(default='sd-1', description="Base model"),
|
|
model_type: ModelType = Path(default='main', description="The type of model"),
|
|
model_name: str = Path(default=None, description="model name"),
|
|
info: Union[tuple(MODEL_CONFIGS)] = Body(description="Model configuration"),
|
|
) -> CreateModelResponse:
|
|
""" Add Model """
|
|
ApiDependencies.invoker.services.model_manager.add_model(
|
|
model_name=model_name,
|
|
base_model=base_model,
|
|
model_type=model_type,
|
|
model_attributes=info.dict(),
|
|
clobber=True,
|
|
)
|
|
model_response = CreateModelResponse(
|
|
model_name = model_name,
|
|
info = info,
|
|
status="success")
|
|
|
|
return model_response
|
|
|
|
@models_router.post(
|
|
"/import",
|
|
operation_id="import_model",
|
|
responses= {
|
|
201: {"description" : "The model imported successfully"},
|
|
404: {"description" : "The model could not be found"},
|
|
409: {"description" : "There is already a model corresponding to this path or repo_id"},
|
|
},
|
|
status_code=201,
|
|
response_model=ImportModelResponse
|
|
)
|
|
async def import_model(
|
|
name: str = Body(description="A model path, repo_id or URL to import"),
|
|
prediction_type: Optional[Literal['v_prediction','epsilon','sample']] = \
|
|
Body(description='Prediction type for SDv2 checkpoint files', default="v_prediction"),
|
|
) -> ImportModelResponse:
|
|
""" Add a model using its local path, repo_id, or remote URL """
|
|
|
|
items_to_import = {name}
|
|
prediction_types = { x.value: x for x in SchedulerPredictionType }
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
installed_models = ApiDependencies.invoker.services.model_manager.heuristic_import(
|
|
items_to_import = items_to_import,
|
|
prediction_type_helper = lambda x: prediction_types.get(prediction_type)
|
|
)
|
|
if info := installed_models.get(name):
|
|
logger.info(f'Successfully imported {name}, got {info}')
|
|
return ImportModelResponse(
|
|
name = name,
|
|
info = info,
|
|
status = "success",
|
|
)
|
|
except KeyError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=404, detail=str(e))
|
|
except ValueError as e:
|
|
logger.error(str(e))
|
|
raise HTTPException(status_code=409, detail=str(e))
|
|
|
|
|
|
@models_router.delete(
|
|
"/{base_model}/{model_type}/{model_name}",
|
|
operation_id="del_model",
|
|
responses={
|
|
204: {
|
|
"description": "Model deleted successfully"
|
|
},
|
|
404: {
|
|
"description": "Model not found"
|
|
}
|
|
},
|
|
)
|
|
async def delete_model(
|
|
base_model: BaseModelType = Path(default='sd-1', description="Base model"),
|
|
model_type: ModelType = Path(default='main', description="The type of model"),
|
|
model_name: str = Path(default=None, description="model name"),
|
|
) -> None:
|
|
"""Delete Model"""
|
|
logger = ApiDependencies.invoker.services.logger
|
|
|
|
try:
|
|
ApiDependencies.invoker.services.model_manager.del_model(model_name,
|
|
base_model = base_model,
|
|
model_type = model_type
|
|
)
|
|
logger.info(f"Deleted model: {model_name}")
|
|
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
|
|
except KeyError:
|
|
logger.error(f"Model not found: {model_name}")
|
|
raise HTTPException(status_code=404, detail=f"Model '{model_name}' not found")
|
|
else:
|
|
logger.info(f"Model deleted: {model_name}")
|
|
raise HTTPException(status_code=204, detail=f"Model '{model_name}' deleted successfully")
|
|
|
|
|
|
# @socketio.on("convertToDiffusers")
|
|
# def convert_to_diffusers(model_to_convert: dict):
|
|
# try:
|
|
# if model_info := self.generate.model_manager.model_info(
|
|
# model_name=model_to_convert["model_name"]
|
|
# ):
|
|
# if "weights" in model_info:
|
|
# ckpt_path = Path(model_info["weights"])
|
|
# original_config_file = Path(model_info["config"])
|
|
# model_name = model_to_convert["model_name"]
|
|
# model_description = model_info["description"]
|
|
# else:
|
|
# self.socketio.emit(
|
|
# "error", {"message": "Model is not a valid checkpoint file"}
|
|
# )
|
|
# else:
|
|
# self.socketio.emit(
|
|
# "error", {"message": "Could not retrieve model info."}
|
|
# )
|
|
|
|
# if not ckpt_path.is_absolute():
|
|
# ckpt_path = Path(Globals.root, ckpt_path)
|
|
|
|
# if original_config_file and not original_config_file.is_absolute():
|
|
# original_config_file = Path(Globals.root, original_config_file)
|
|
|
|
# diffusers_path = Path(
|
|
# ckpt_path.parent.absolute(), f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if model_to_convert["save_location"] == "root":
|
|
# diffusers_path = Path(
|
|
# global_converted_ckpts_dir(), f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if (
|
|
# model_to_convert["save_location"] == "custom"
|
|
# and model_to_convert["custom_location"] is not None
|
|
# ):
|
|
# diffusers_path = Path(
|
|
# model_to_convert["custom_location"], f"{model_name}_diffusers"
|
|
# )
|
|
|
|
# if diffusers_path.exists():
|
|
# shutil.rmtree(diffusers_path)
|
|
|
|
# self.generate.model_manager.convert_and_import(
|
|
# ckpt_path,
|
|
# diffusers_path,
|
|
# model_name=model_name,
|
|
# model_description=model_description,
|
|
# vae=None,
|
|
# original_config_file=original_config_file,
|
|
# commit_to_conf=opt.conf,
|
|
# )
|
|
|
|
# new_model_list = self.generate.model_manager.list_models()
|
|
# socketio.emit(
|
|
# "modelConverted",
|
|
# {
|
|
# "new_model_name": model_name,
|
|
# "model_list": new_model_list,
|
|
# "update": True,
|
|
# },
|
|
# )
|
|
# print(f">> Model Converted: {model_name}")
|
|
# except Exception as e:
|
|
# self.handle_exceptions(e)
|
|
|
|
# @socketio.on("mergeDiffusersModels")
|
|
# def merge_diffusers_models(model_merge_info: dict):
|
|
# try:
|
|
# models_to_merge = model_merge_info["models_to_merge"]
|
|
# model_ids_or_paths = [
|
|
# self.generate.model_manager.model_name_or_path(x)
|
|
# for x in models_to_merge
|
|
# ]
|
|
# merged_pipe = merge_diffusion_models(
|
|
# model_ids_or_paths,
|
|
# model_merge_info["alpha"],
|
|
# model_merge_info["interp"],
|
|
# model_merge_info["force"],
|
|
# )
|
|
|
|
# dump_path = global_models_dir() / "merged_models"
|
|
# if model_merge_info["model_merge_save_path"] is not None:
|
|
# dump_path = Path(model_merge_info["model_merge_save_path"])
|
|
|
|
# os.makedirs(dump_path, exist_ok=True)
|
|
# dump_path = dump_path / model_merge_info["merged_model_name"]
|
|
# merged_pipe.save_pretrained(dump_path, safe_serialization=1)
|
|
|
|
# merged_model_config = dict(
|
|
# model_name=model_merge_info["merged_model_name"],
|
|
# description=f'Merge of models {", ".join(models_to_merge)}',
|
|
# commit_to_conf=opt.conf,
|
|
# )
|
|
|
|
# if vae := self.generate.model_manager.config[models_to_merge[0]].get(
|
|
# "vae", None
|
|
# ):
|
|
# print(f">> Using configured VAE assigned to {models_to_merge[0]}")
|
|
# merged_model_config.update(vae=vae)
|
|
|
|
# self.generate.model_manager.import_diffuser_model(
|
|
# dump_path, **merged_model_config
|
|
# )
|
|
# new_model_list = self.generate.model_manager.list_models()
|
|
|
|
# socketio.emit(
|
|
# "modelsMerged",
|
|
# {
|
|
# "merged_models": models_to_merge,
|
|
# "merged_model_name": model_merge_info["merged_model_name"],
|
|
# "model_list": new_model_list,
|
|
# "update": True,
|
|
# },
|
|
# )
|
|
# print(f">> Models Merged: {models_to_merge}")
|
|
# print(f">> New Model Added: {model_merge_info['merged_model_name']}")
|
|
# except Exception as e:
|