mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
998 lines
36 KiB
Python
998 lines
36 KiB
Python
"""Helper class for dealing with image generation arguments.
|
|
|
|
The Args class parses both the command line (shell) arguments, as well as the
|
|
command string passed at the invoke> prompt. It serves as the definitive repository
|
|
of all the arguments used by Generate and their default values, and implements the
|
|
preliminary metadata standards discussed here:
|
|
|
|
https://github.com/lstein/stable-diffusion/issues/266
|
|
|
|
To use:
|
|
opt = Args()
|
|
|
|
# Read in the command line options:
|
|
# this returns a namespace object like the underlying argparse library)
|
|
# You do not have to use the return value, but you can check it against None
|
|
# to detect illegal arguments on the command line.
|
|
args = opt.parse_args()
|
|
if not args:
|
|
print('oops')
|
|
sys.exit(-1)
|
|
|
|
# read in a command passed to the invoke> prompt:
|
|
opts = opt.parse_cmd('do androids dream of electric sheep? -H256 -W1024 -n4')
|
|
|
|
# The Args object acts like a namespace object
|
|
print(opt.model)
|
|
|
|
You can set attributes in the usual way, use vars(), etc.:
|
|
|
|
opt.model = 'something-else'
|
|
do_something(**vars(a))
|
|
|
|
It is helpful in saving metadata:
|
|
|
|
# To get a json representation of all the values, allowing
|
|
# you to override any values dynamically
|
|
j = opt.json(seed=42)
|
|
|
|
# To get the prompt string with the switches, allowing you
|
|
# to override any values dynamically
|
|
j = opt.dream_prompt_str(seed=42)
|
|
|
|
If you want to access the namespace objects from the shell args or the
|
|
parsed command directly, you may use the values returned from the
|
|
original calls to parse_args() and parse_cmd(), or get them later
|
|
using the _arg_switches and _cmd_switches attributes. This can be
|
|
useful if both the args and the command contain the same attribute and
|
|
you wish to apply logic as to which one to use. For example:
|
|
|
|
a = Args()
|
|
args = a.parse_args()
|
|
opts = a.parse_cmd(string)
|
|
do_grid = args.grid or opts.grid
|
|
|
|
To add new attributes, edit the _create_arg_parser() and
|
|
_create_dream_cmd_parser() methods.
|
|
|
|
**Generating and retrieving sd-metadata**
|
|
|
|
To generate a dict representing RFC266 metadata:
|
|
|
|
metadata = metadata_dumps(opt,<seeds,model_hash,postprocesser>)
|
|
|
|
This will generate an RFC266 dictionary that can then be turned into a JSON
|
|
and written to the PNG file. The optional seeds, weights, model_hash and
|
|
postprocesser arguments are not available to the opt object and so must be
|
|
provided externally. See how invoke.py does it.
|
|
|
|
Note that this function was originally called format_metadata() and a wrapper
|
|
is provided that issues a deprecation notice.
|
|
|
|
To retrieve a (series of) opt objects corresponding to the metadata, do this:
|
|
|
|
opt_list = metadata_loads(metadata)
|
|
|
|
The metadata should be pulled out of the PNG image. pngwriter has a method
|
|
retrieve_metadata that will do this, or you can do it in one swell foop
|
|
with metadata_from_png():
|
|
|
|
opt_list = metadata_from_png('/path/to/image_file.png')
|
|
"""
|
|
|
|
import argparse
|
|
from argparse import Namespace, RawTextHelpFormatter
|
|
import pydoc
|
|
import shlex
|
|
import json
|
|
import hashlib
|
|
import os
|
|
import re
|
|
import copy
|
|
import base64
|
|
import functools
|
|
import ldm.invoke.pngwriter
|
|
from ldm.invoke.prompt_parser import split_weighted_subprompts
|
|
|
|
SAMPLER_CHOICES = [
|
|
'ddim',
|
|
'k_dpm_2_a',
|
|
'k_dpm_2',
|
|
'k_euler_a',
|
|
'k_euler',
|
|
'k_heun',
|
|
'k_lms',
|
|
'plms',
|
|
]
|
|
|
|
PRECISION_CHOICES = [
|
|
'auto',
|
|
'float32',
|
|
'autocast',
|
|
'float16',
|
|
]
|
|
|
|
# is there a way to pick this up during git commits?
|
|
APP_ID = 'invoke-ai/InvokeAI'
|
|
APP_VERSION = 'v2.02'
|
|
|
|
class ArgFormatter(argparse.RawTextHelpFormatter):
|
|
# use defined argument order to display usage
|
|
def _format_usage(self, usage, actions, groups, prefix):
|
|
if prefix is None:
|
|
prefix = 'usage: '
|
|
|
|
# if usage is specified, use that
|
|
if usage is not None:
|
|
usage = usage % dict(prog=self._prog)
|
|
|
|
# if no optionals or positionals are available, usage is just prog
|
|
elif usage is None and not actions:
|
|
usage = 'invoke>'
|
|
elif usage is None:
|
|
prog='invoke>'
|
|
# build full usage string
|
|
action_usage = self._format_actions_usage(actions, groups) # NEW
|
|
usage = ' '.join([s for s in [prog, action_usage] if s])
|
|
# omit the long line wrapping code
|
|
# prefix with 'usage:'
|
|
return '%s%s\n\n' % (prefix, usage)
|
|
|
|
class PagingArgumentParser(argparse.ArgumentParser):
|
|
'''
|
|
A custom ArgumentParser that uses pydoc to page its output.
|
|
'''
|
|
def print_help(self, file=None):
|
|
text = self.format_help()
|
|
pydoc.pager(text)
|
|
|
|
class Args(object):
|
|
def __init__(self,arg_parser=None,cmd_parser=None):
|
|
'''
|
|
Initialize new Args class. It takes two optional arguments, an argparse
|
|
parser for switches given on the shell command line, and an argparse
|
|
parser for switches given on the invoke> CLI line. If one or both are
|
|
missing, it creates appropriate parsers internally.
|
|
'''
|
|
self._arg_parser = arg_parser or self._create_arg_parser()
|
|
self._cmd_parser = cmd_parser or self._create_dream_cmd_parser()
|
|
self._arg_switches = self.parse_cmd('') # fill in defaults
|
|
self._cmd_switches = self.parse_cmd('') # fill in defaults
|
|
|
|
def parse_args(self):
|
|
'''Parse the shell switches and store.'''
|
|
try:
|
|
self._arg_switches = self._arg_parser.parse_args()
|
|
return self._arg_switches
|
|
except:
|
|
return None
|
|
|
|
def parse_cmd(self,cmd_string):
|
|
'''Parse a invoke>-style command string '''
|
|
command = cmd_string.replace("'", "\\'")
|
|
try:
|
|
elements = shlex.split(command)
|
|
elements = [x.replace("\\'","'") for x in elements]
|
|
except ValueError:
|
|
import sys, traceback
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
return
|
|
switches = ['']
|
|
switches_started = False
|
|
|
|
for element in elements:
|
|
if element[0] == '-' and not switches_started:
|
|
switches_started = True
|
|
if switches_started:
|
|
switches.append(element)
|
|
else:
|
|
switches[0] += element
|
|
switches[0] += ' '
|
|
switches[0] = switches[0][: len(switches[0]) - 1]
|
|
try:
|
|
self._cmd_switches = self._cmd_parser.parse_args(switches)
|
|
return self._cmd_switches
|
|
except:
|
|
return None
|
|
|
|
def json(self,**kwargs):
|
|
return json.dumps(self.to_dict(**kwargs))
|
|
|
|
def to_dict(self,**kwargs):
|
|
a = vars(self)
|
|
a.update(kwargs)
|
|
return a
|
|
|
|
# Isn't there a more automated way of doing this?
|
|
# Ideally we get the switch strings out of the argparse objects,
|
|
# but I don't see a documented API for this.
|
|
def dream_prompt_str(self,**kwargs):
|
|
"""Normalized dream_prompt."""
|
|
a = vars(self)
|
|
a.update(kwargs)
|
|
switches = list()
|
|
switches.append(f'"{a["prompt"]}"')
|
|
switches.append(f'-s {a["steps"]}')
|
|
switches.append(f'-S {a["seed"]}')
|
|
switches.append(f'-W {a["width"]}')
|
|
switches.append(f'-H {a["height"]}')
|
|
switches.append(f'-C {a["cfg_scale"]}')
|
|
if a['perlin'] > 0:
|
|
switches.append(f'--perlin {a["perlin"]}')
|
|
if a['threshold'] > 0:
|
|
switches.append(f'--threshold {a["threshold"]}')
|
|
if a['grid']:
|
|
switches.append('--grid')
|
|
if a['seamless']:
|
|
switches.append('--seamless')
|
|
if a['hires_fix']:
|
|
switches.append('--hires_fix')
|
|
|
|
# img2img generations have parameters relevant only to them and have special handling
|
|
if a['init_img'] and len(a['init_img'])>0:
|
|
switches.append(f'-I {a["init_img"]}')
|
|
switches.append(f'-A {a["sampler_name"]}')
|
|
if a['fit']:
|
|
switches.append(f'--fit')
|
|
if a['init_mask'] and len(a['init_mask'])>0:
|
|
switches.append(f'-M {a["init_mask"]}')
|
|
if a['init_color'] and len(a['init_color'])>0:
|
|
switches.append(f'--init_color {a["init_color"]}')
|
|
if a['strength'] and a['strength']>0:
|
|
switches.append(f'-f {a["strength"]}')
|
|
if a['inpaint_replace']:
|
|
switches.append(f'--inpaint_replace')
|
|
else:
|
|
switches.append(f'-A {a["sampler_name"]}')
|
|
|
|
# facetool-specific parameters, only print if running facetool
|
|
if a['facetool_strength']:
|
|
switches.append(f'-G {a["facetool_strength"]}')
|
|
switches.append(f'-ft {a["facetool"]}')
|
|
if a["facetool"] == "codeformer":
|
|
switches.append(f'-cf {a["codeformer_fidelity"]}')
|
|
|
|
if a['outcrop']:
|
|
switches.append(f'-c {" ".join([str(u) for u in a["outcrop"]])}')
|
|
|
|
# esrgan-specific parameters
|
|
if a['upscale']:
|
|
switches.append(f'-U {" ".join([str(u) for u in a["upscale"]])}')
|
|
|
|
# embiggen parameters
|
|
if a['embiggen']:
|
|
switches.append(f'--embiggen {" ".join([str(u) for u in a["embiggen"]])}')
|
|
if a['embiggen_tiles']:
|
|
switches.append(f'--embiggen_tiles {" ".join([str(u) for u in a["embiggen_tiles"]])}')
|
|
|
|
# outpainting parameters
|
|
if a['out_direction']:
|
|
switches.append(f'-D {" ".join([str(u) for u in a["out_direction"]])}')
|
|
|
|
# LS: slight semantic drift which needs addressing in the future:
|
|
# 1. Variations come out of the stored metadata as a packed string with the keyword "variations"
|
|
# 2. However, they come out of the CLI (and probably web) with the keyword "with_variations" and
|
|
# in broken-out form. Variation (1) should be changed to comply with (2)
|
|
if a['with_variations'] and len(a['with_variations'])>0:
|
|
formatted_variations = ','.join(f'{seed}:{weight}' for seed, weight in (a["with_variations"]))
|
|
switches.append(f'-V {formatted_variations}')
|
|
if 'variations' in a and len(a['variations'])>0:
|
|
switches.append(f'-V {a["variations"]}')
|
|
return ' '.join(switches)
|
|
|
|
def __getattribute__(self,name):
|
|
'''
|
|
Returns union of command-line arguments and dream_prompt arguments,
|
|
with the latter superseding the former.
|
|
'''
|
|
cmd_switches = None
|
|
arg_switches = None
|
|
try:
|
|
cmd_switches = object.__getattribute__(self,'_cmd_switches')
|
|
arg_switches = object.__getattribute__(self,'_arg_switches')
|
|
except AttributeError:
|
|
pass
|
|
|
|
if cmd_switches and arg_switches and name=='__dict__':
|
|
return self._merge_dict(
|
|
arg_switches.__dict__,
|
|
cmd_switches.__dict__,
|
|
)
|
|
try:
|
|
return object.__getattribute__(self,name)
|
|
except AttributeError:
|
|
pass
|
|
|
|
if not hasattr(cmd_switches,name) and not hasattr(arg_switches,name):
|
|
raise AttributeError
|
|
|
|
value_arg,value_cmd = (None,None)
|
|
try:
|
|
value_cmd = getattr(cmd_switches,name)
|
|
except AttributeError:
|
|
pass
|
|
try:
|
|
value_arg = getattr(arg_switches,name)
|
|
except AttributeError:
|
|
pass
|
|
|
|
# here is where we can pick and choose which to use
|
|
# default behavior is to choose the dream_command value over
|
|
# the arg value. For example, the --grid and --individual options are a little
|
|
# funny because of their push/pull relationship. This is how to handle it.
|
|
if name=='grid':
|
|
if cmd_switches.individual:
|
|
return False
|
|
else:
|
|
return value_cmd or value_arg
|
|
return value_cmd if value_cmd is not None else value_arg
|
|
|
|
def __setattr__(self,name,value):
|
|
if name.startswith('_'):
|
|
object.__setattr__(self,name,value)
|
|
else:
|
|
self._cmd_switches.__dict__[name] = value
|
|
|
|
def _merge_dict(self,dict1,dict2):
|
|
new_dict = {}
|
|
for k in set(list(dict1.keys())+list(dict2.keys())):
|
|
value1 = dict1.get(k,None)
|
|
value2 = dict2.get(k,None)
|
|
new_dict[k] = value2 if value2 is not None else value1
|
|
return new_dict
|
|
|
|
def _create_arg_parser(self):
|
|
'''
|
|
This defines all the arguments used on the command line when you launch
|
|
the CLI or web backend.
|
|
'''
|
|
parser = argparse.ArgumentParser(
|
|
description=
|
|
"""
|
|
Generate images using Stable Diffusion.
|
|
Use --web to launch the web interface.
|
|
Use --from_file to load prompts from a file path or standard input ("-").
|
|
Otherwise you will be dropped into an interactive command prompt (type -h for help.)
|
|
Other command-line arguments are defaults that can usually be overridden
|
|
prompt the command prompt.
|
|
""",
|
|
)
|
|
model_group = parser.add_argument_group('Model selection')
|
|
file_group = parser.add_argument_group('Input/output')
|
|
web_server_group = parser.add_argument_group('Web server')
|
|
render_group = parser.add_argument_group('Rendering')
|
|
postprocessing_group = parser.add_argument_group('Postprocessing')
|
|
deprecated_group = parser.add_argument_group('Deprecated options')
|
|
|
|
deprecated_group.add_argument('--laion400m')
|
|
deprecated_group.add_argument('--weights') # deprecated
|
|
model_group.add_argument(
|
|
'--config',
|
|
'-c',
|
|
'-config',
|
|
dest='conf',
|
|
default='./configs/models.yaml',
|
|
help='Path to configuration file for alternate models.',
|
|
)
|
|
model_group.add_argument(
|
|
'--model',
|
|
help='Indicates which diffusion model to load (defaults to "default" stanza in configs/models.yaml)',
|
|
)
|
|
model_group.add_argument(
|
|
'--png_compression','-z',
|
|
type=int,
|
|
default=6,
|
|
choices=range(0,9),
|
|
dest='png_compression',
|
|
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
|
|
)
|
|
model_group.add_argument(
|
|
'--sampler',
|
|
'-A',
|
|
'-m',
|
|
dest='sampler_name',
|
|
type=str,
|
|
choices=SAMPLER_CHOICES,
|
|
metavar='SAMPLER_NAME',
|
|
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
|
default='k_lms',
|
|
)
|
|
model_group.add_argument(
|
|
'-F',
|
|
'--full_precision',
|
|
dest='full_precision',
|
|
action='store_true',
|
|
help='Deprecated way to set --precision=float32',
|
|
)
|
|
model_group.add_argument(
|
|
'--free_gpu_mem',
|
|
dest='free_gpu_mem',
|
|
action='store_true',
|
|
help='Force free gpu memory before final decoding',
|
|
)
|
|
model_group.add_argument(
|
|
'--precision',
|
|
dest='precision',
|
|
type=str,
|
|
choices=PRECISION_CHOICES,
|
|
metavar='PRECISION',
|
|
help=f'Set model precision. Defaults to auto selected based on device. Options: {", ".join(PRECISION_CHOICES)}',
|
|
default='auto',
|
|
)
|
|
file_group.add_argument(
|
|
'--from_file',
|
|
dest='infile',
|
|
type=str,
|
|
help='If specified, load prompts from this file',
|
|
)
|
|
file_group.add_argument(
|
|
'--outdir',
|
|
'-o',
|
|
type=str,
|
|
help='Directory to save generated images and a log of prompts and seeds. Default: outputs/img-samples',
|
|
default='outputs/img-samples',
|
|
)
|
|
file_group.add_argument(
|
|
'--prompt_as_dir',
|
|
'-p',
|
|
action='store_true',
|
|
help='Place images in subdirectories named after the prompt.',
|
|
)
|
|
render_group.add_argument(
|
|
'--grid',
|
|
'-g',
|
|
action='store_true',
|
|
help='generate a grid'
|
|
)
|
|
render_group.add_argument(
|
|
'--embedding_path',
|
|
type=str,
|
|
help='Path to a pre-trained embedding manager checkpoint - can only be set on command line',
|
|
)
|
|
# Restoration related args
|
|
postprocessing_group.add_argument(
|
|
'--no_restore',
|
|
dest='restore',
|
|
action='store_false',
|
|
help='Disable face restoration with GFPGAN or codeformer',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--no_upscale',
|
|
dest='esrgan',
|
|
action='store_false',
|
|
help='Disable upscaling with ESRGAN',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--esrgan_bg_tile',
|
|
type=int,
|
|
default=400,
|
|
help='Tile size for background sampler, 0 for no tile during testing. Default: 400.',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--gfpgan_model_path',
|
|
type=str,
|
|
default='experiments/pretrained_models/GFPGANv1.4.pth',
|
|
help='Indicates the path to the GFPGAN model, relative to --gfpgan_dir.',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--gfpgan_dir',
|
|
type=str,
|
|
default='./src/gfpgan',
|
|
help='Indicates the directory containing the GFPGAN code.',
|
|
)
|
|
web_server_group.add_argument(
|
|
'--web',
|
|
dest='web',
|
|
action='store_true',
|
|
help='Start in web server mode.',
|
|
)
|
|
web_server_group.add_argument(
|
|
'--web_develop',
|
|
dest='web_develop',
|
|
action='store_true',
|
|
help='Start in web server development mode.',
|
|
)
|
|
web_server_group.add_argument(
|
|
"--web_verbose",
|
|
action="store_true",
|
|
help="Enables verbose logging",
|
|
)
|
|
web_server_group.add_argument(
|
|
"--cors",
|
|
nargs="*",
|
|
type=str,
|
|
help="Additional allowed origins, comma-separated",
|
|
)
|
|
web_server_group.add_argument(
|
|
'--host',
|
|
type=str,
|
|
default='127.0.0.1',
|
|
help='Web server: Host or IP to listen on. Set to 0.0.0.0 to accept traffic from other devices on your network.'
|
|
)
|
|
web_server_group.add_argument(
|
|
'--port',
|
|
type=int,
|
|
default='9090',
|
|
help='Web server: Port to listen on'
|
|
)
|
|
web_server_group.add_argument(
|
|
'--gui',
|
|
dest='gui',
|
|
action='store_true',
|
|
help='Start InvokeAI GUI',
|
|
)
|
|
return parser
|
|
|
|
# This creates the parser that processes commands on the invoke> command line
|
|
def _create_dream_cmd_parser(self):
|
|
parser = PagingArgumentParser(
|
|
formatter_class=ArgFormatter,
|
|
description=
|
|
"""
|
|
*Image generation*
|
|
invoke> a fantastic alien landscape -W576 -H512 -s60 -n4
|
|
|
|
*postprocessing*
|
|
!fix applies upscaling/facefixing to a previously-generated image.
|
|
invoke> !fix 0000045.4829112.png -G1 -U4 -ft codeformer
|
|
|
|
*History manipulation*
|
|
!fetch retrieves the command used to generate an earlier image.
|
|
invoke> !fetch 0000015.8929913.png
|
|
invoke> a fantastic alien landscape -W 576 -H 512 -s 60 -A plms -C 7.5
|
|
|
|
!history lists all the commands issued during the current session.
|
|
|
|
!NN retrieves the NNth command from the history
|
|
|
|
*Model manipulation*
|
|
!models -- list models in configs/models.yaml
|
|
!switch <model_name> -- switch to model named <model_name>
|
|
!import_model path/to/weights/file.ckpt -- adds a model to your config
|
|
!edit_model <model_name> -- edit a model's description
|
|
!del_model <model_name> -- delete a model
|
|
"""
|
|
)
|
|
render_group = parser.add_argument_group('General rendering')
|
|
img2img_group = parser.add_argument_group('Image-to-image and inpainting')
|
|
variation_group = parser.add_argument_group('Creating and combining variations')
|
|
postprocessing_group = parser.add_argument_group('Post-processing')
|
|
special_effects_group = parser.add_argument_group('Special effects')
|
|
render_group.add_argument('prompt')
|
|
render_group.add_argument(
|
|
'-s',
|
|
'--steps',
|
|
type=int,
|
|
default=50,
|
|
help='Number of steps'
|
|
)
|
|
render_group.add_argument(
|
|
'-S',
|
|
'--seed',
|
|
type=int,
|
|
default=None,
|
|
help='Image seed; a +ve integer, or use -1 for the previous seed, -2 for the one before that, etc',
|
|
)
|
|
render_group.add_argument(
|
|
'-n',
|
|
'--iterations',
|
|
type=int,
|
|
default=1,
|
|
help='Number of samplings to perform (slower, but will provide seeds for individual images)',
|
|
)
|
|
render_group.add_argument(
|
|
'-W',
|
|
'--width',
|
|
type=int,
|
|
help='Image width, multiple of 64',
|
|
)
|
|
render_group.add_argument(
|
|
'-H',
|
|
'--height',
|
|
type=int,
|
|
help='Image height, multiple of 64',
|
|
)
|
|
render_group.add_argument(
|
|
'-C',
|
|
'--cfg_scale',
|
|
default=7.5,
|
|
type=float,
|
|
help='Classifier free guidance (CFG) scale - higher numbers cause generator to "try" harder.',
|
|
)
|
|
render_group.add_argument(
|
|
'--threshold',
|
|
default=0.0,
|
|
type=float,
|
|
help='Latent threshold for classifier free guidance (CFG) - prevent generator from "trying" too hard. Use positive values, 0 disables.',
|
|
)
|
|
render_group.add_argument(
|
|
'--perlin',
|
|
default=0.0,
|
|
type=float,
|
|
help='Perlin noise scale (0.0 - 1.0) - add perlin noise to the initialization instead of the usual gaussian noise.',
|
|
)
|
|
render_group.add_argument(
|
|
'--grid',
|
|
'-g',
|
|
action='store_true',
|
|
help='generate a grid'
|
|
)
|
|
render_group.add_argument(
|
|
'-i',
|
|
'--individual',
|
|
action='store_true',
|
|
help='override command-line --grid setting and generate individual images'
|
|
)
|
|
render_group.add_argument(
|
|
'-x',
|
|
'--skip_normalize',
|
|
action='store_true',
|
|
help='Skip subprompt weight normalization',
|
|
)
|
|
render_group.add_argument(
|
|
'-A',
|
|
'-m',
|
|
'--sampler',
|
|
dest='sampler_name',
|
|
type=str,
|
|
choices=SAMPLER_CHOICES,
|
|
metavar='SAMPLER_NAME',
|
|
help=f'Switch to a different sampler. Supported samplers: {", ".join(SAMPLER_CHOICES)}',
|
|
)
|
|
render_group.add_argument(
|
|
'-t',
|
|
'--log_tokenization',
|
|
action='store_true',
|
|
help='shows how the prompt is split into tokens'
|
|
)
|
|
render_group.add_argument(
|
|
'--outdir',
|
|
'-o',
|
|
type=str,
|
|
help='Directory to save generated images and a log of prompts and seeds',
|
|
)
|
|
render_group.add_argument(
|
|
'--hires_fix',
|
|
action='store_true',
|
|
dest='hires_fix',
|
|
help='Create hires image using img2img to prevent duplicated objects'
|
|
)
|
|
render_group.add_argument(
|
|
'--save_intermediates',
|
|
type=int,
|
|
default=0,
|
|
dest='save_intermediates',
|
|
help='Save every nth intermediate image into an "intermediates" directory within the output directory'
|
|
)
|
|
render_group.add_argument(
|
|
'--png_compression','-z',
|
|
type=int,
|
|
default=6,
|
|
choices=range(0,10),
|
|
dest='png_compression',
|
|
help='level of PNG compression, from 0 (none) to 9 (maximum). Default is 6.'
|
|
)
|
|
img2img_group.add_argument(
|
|
'-I',
|
|
'--init_img',
|
|
type=str,
|
|
help='Path to input image for img2img mode (supersedes width and height)',
|
|
)
|
|
img2img_group.add_argument(
|
|
'-M',
|
|
'--init_mask',
|
|
type=str,
|
|
help='Path to input mask for inpainting mode (supersedes width and height)',
|
|
)
|
|
img2img_group.add_argument(
|
|
'-tm',
|
|
'--text_mask',
|
|
nargs='+',
|
|
type=str,
|
|
help='Use the clipseg classifier to generate the mask area for inpainting. Provide a description of the area to mask ("a mug"), optionally followed by the confidence level threshold (0-1.0; defaults to 0.5).',
|
|
default=None,
|
|
)
|
|
img2img_group.add_argument(
|
|
'--init_color',
|
|
type=str,
|
|
help='Path to reference image for color correction (used for repeated img2img and inpainting)'
|
|
)
|
|
img2img_group.add_argument(
|
|
'-T',
|
|
'-fit',
|
|
'--fit',
|
|
action='store_true',
|
|
help='If specified, will resize the input image to fit within the dimensions of width x height (512x512 default)',
|
|
)
|
|
img2img_group.add_argument(
|
|
'-f',
|
|
'--strength',
|
|
type=float,
|
|
help='Strength for noising/unnoising. 0.0 preserves image exactly, 1.0 replaces it completely',
|
|
default=0.75,
|
|
)
|
|
img2img_group.add_argument(
|
|
'-D',
|
|
'--out_direction',
|
|
nargs='+',
|
|
type=str,
|
|
metavar=('direction', 'pixels'),
|
|
help='Direction to extend the given image (left|right|top|bottom). If a distance pixel value is not specified it defaults to half the image size'
|
|
)
|
|
img2img_group.add_argument(
|
|
'-c',
|
|
'--outcrop',
|
|
nargs='+',
|
|
type=str,
|
|
metavar=('direction','pixels'),
|
|
help='Outcrop the image with one or more direction/pixel pairs: -c top 64 bottom 128 left 64 right 64',
|
|
)
|
|
img2img_group.add_argument(
|
|
'-r',
|
|
'--inpaint_replace',
|
|
type=float,
|
|
default=0.0,
|
|
help='when inpainting, adjust how aggressively to replace the part of the picture under the mask, from 0.0 (a gentle merge) to 1.0 (replace entirely)',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'-ft',
|
|
'--facetool',
|
|
type=str,
|
|
default='gfpgan',
|
|
help='Select the face restoration AI to use: gfpgan, codeformer',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'-G',
|
|
'--facetool_strength',
|
|
'--gfpgan_strength',
|
|
type=float,
|
|
help='The strength at which to apply the face restoration to the result.',
|
|
default=0.0,
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'-cf',
|
|
'--codeformer_fidelity',
|
|
type=float,
|
|
help='Used along with CodeFormer. Takes values between 0 and 1. 0 produces high quality but low accuracy. 1 produces high accuracy but low quality.',
|
|
default=0.75
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'-U',
|
|
'--upscale',
|
|
nargs='+',
|
|
type=float,
|
|
help='Scale factor (1, 2, 3, 4, etc..) for upscaling final output followed by upscaling strength (0-1.0). If strength not specified, defaults to 0.75',
|
|
default=None,
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--save_original',
|
|
'-save_orig',
|
|
action='store_true',
|
|
help='Save original. Use it when upscaling to save both versions.',
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--embiggen',
|
|
'-embiggen',
|
|
nargs='+',
|
|
type=float,
|
|
help='Arbitrary upscaling using img2img. Provide scale factor (0.75), optionally followed by strength (0.75) and tile overlap proportion (0.25).',
|
|
default=None,
|
|
)
|
|
postprocessing_group.add_argument(
|
|
'--embiggen_tiles',
|
|
'-embiggen_tiles',
|
|
nargs='+',
|
|
type=int,
|
|
help='For embiggen, provide list of tiles to process and replace onto the image e.g. `1 3 5`.',
|
|
default=None,
|
|
)
|
|
special_effects_group.add_argument(
|
|
'--seamless',
|
|
action='store_true',
|
|
help='Change the model to seamless tiling (circular) mode',
|
|
)
|
|
special_effects_group.add_argument(
|
|
'--seamless_axes',
|
|
default=['x', 'y'],
|
|
type=list[str],
|
|
help='Specify which axes to use circular convolution on.',
|
|
)
|
|
variation_group.add_argument(
|
|
'-v',
|
|
'--variation_amount',
|
|
default=0.0,
|
|
type=float,
|
|
help='If > 0, generates variations on the initial seed instead of random seeds per iteration. Must be between 0 and 1. Higher values will be more different.'
|
|
)
|
|
variation_group.add_argument(
|
|
'-V',
|
|
'--with_variations',
|
|
default=None,
|
|
type=str,
|
|
help='list of variations to apply, in the format `seed:weight,seed:weight,...'
|
|
)
|
|
return parser
|
|
|
|
def format_metadata(**kwargs):
|
|
print(f'format_metadata() is deprecated. Please use metadata_dumps()')
|
|
return metadata_dumps(kwargs)
|
|
|
|
def metadata_dumps(opt,
|
|
seeds=[],
|
|
model_hash=None,
|
|
postprocessing=None):
|
|
'''
|
|
Given an Args object, returns a dict containing the keys and
|
|
structure of the proposed stable diffusion metadata standard
|
|
https://github.com/lstein/stable-diffusion/discussions/392
|
|
This is intended to be turned into JSON and stored in the
|
|
"sd
|
|
'''
|
|
|
|
# top-level metadata minus `image` or `images`
|
|
metadata = {
|
|
'model' : 'stable diffusion',
|
|
'model_id' : opt.model,
|
|
'model_hash' : model_hash,
|
|
'app_id' : APP_ID,
|
|
'app_version' : APP_VERSION,
|
|
}
|
|
|
|
# # add some RFC266 fields that are generated internally, and not as
|
|
# # user args
|
|
image_dict = opt.to_dict(
|
|
postprocessing=postprocessing
|
|
)
|
|
|
|
# remove any image keys not mentioned in RFC #266
|
|
rfc266_img_fields = ['type','postprocessing','sampler','prompt','seed','variations','steps',
|
|
'cfg_scale','threshold','perlin','step_number','width','height','extra','strength',
|
|
'init_img','init_mask','facetool','facetool_strength','upscale']
|
|
|
|
rfc_dict ={}
|
|
|
|
for item in image_dict.items():
|
|
key,value = item
|
|
if key in rfc266_img_fields:
|
|
rfc_dict[key] = value
|
|
|
|
# semantic drift
|
|
rfc_dict['sampler'] = image_dict.get('sampler_name',None)
|
|
|
|
# display weighted subprompts (liable to change)
|
|
if opt.prompt:
|
|
subprompts = split_weighted_subprompts(opt.prompt)
|
|
subprompts = [{'prompt':x[0],'weight':x[1]} for x in subprompts]
|
|
rfc_dict['prompt'] = subprompts
|
|
|
|
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
|
|
rfc_dict['variations'] = [{'seed':x[0],'weight':x[1]} for x in opt.with_variations] if opt.with_variations else []
|
|
|
|
# if variations are present then we need to replace 'seed' with 'orig_seed'
|
|
if hasattr(opt,'first_seed'):
|
|
rfc_dict['seed'] = opt.first_seed
|
|
|
|
if opt.init_img:
|
|
rfc_dict['type'] = 'img2img'
|
|
rfc_dict['strength_steps'] = rfc_dict.pop('strength')
|
|
rfc_dict['orig_hash'] = calculate_init_img_hash(opt.init_img)
|
|
rfc_dict['inpaint_replace'] = opt.inpaint_replace
|
|
else:
|
|
rfc_dict['type'] = 'txt2img'
|
|
rfc_dict.pop('strength')
|
|
|
|
if len(seeds)==0 and opt.seed:
|
|
seeds=[seed]
|
|
|
|
if opt.grid:
|
|
images = []
|
|
for seed in seeds:
|
|
rfc_dict['seed'] = seed
|
|
images.append(copy.copy(rfc_dict))
|
|
metadata['images'] = images
|
|
else:
|
|
# there should only ever be a single seed if we did not generate a grid
|
|
assert len(seeds) == 1, 'Expected a single seed'
|
|
rfc_dict['seed'] = seeds[0]
|
|
metadata['image'] = rfc_dict
|
|
|
|
return metadata
|
|
|
|
@functools.lru_cache(maxsize=50)
|
|
def metadata_from_png(png_file_path) -> Args:
|
|
'''
|
|
Given the path to a PNG file created by dream.py, retrieves
|
|
an Args object containing the image metadata. Note that this
|
|
returns a single Args object, not multiple.
|
|
'''
|
|
meta = ldm.invoke.pngwriter.retrieve_metadata(png_file_path)
|
|
if 'sd-metadata' in meta and len(meta['sd-metadata'])>0 :
|
|
return metadata_loads(meta)[0]
|
|
else:
|
|
return legacy_metadata_load(meta,png_file_path)
|
|
|
|
def dream_cmd_from_png(png_file_path):
|
|
opt = metadata_from_png(png_file_path)
|
|
return opt.dream_prompt_str()
|
|
|
|
def metadata_loads(metadata) -> list:
|
|
'''
|
|
Takes the dictionary corresponding to RFC266 (https://github.com/lstein/stable-diffusion/issues/266)
|
|
and returns a series of opt objects for each of the images described in the dictionary. Note that this
|
|
returns a list, and not a single object. See metadata_from_png() for a more convenient function for
|
|
files that contain a single image.
|
|
'''
|
|
results = []
|
|
try:
|
|
if 'grid' in metadata['sd-metadata']:
|
|
images = metadata['sd-metadata']['images']
|
|
else:
|
|
images = [metadata['sd-metadata']['image']]
|
|
for image in images:
|
|
# repack the prompt and variations
|
|
if 'prompt' in image:
|
|
image['prompt'] = repack_prompt(image['prompt'])
|
|
if 'variations' in image:
|
|
image['variations'] = ','.join([':'.join([str(x['seed']),str(x['weight'])]) for x in image['variations']])
|
|
# fix a bit of semantic drift here
|
|
image['sampler_name']=image.pop('sampler')
|
|
opt = Args()
|
|
opt._cmd_switches = Namespace(**image)
|
|
results.append(opt)
|
|
except Exception as e:
|
|
import sys, traceback
|
|
print('>> could not read metadata',file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
return results
|
|
|
|
def repack_prompt(prompt_list:list)->str:
|
|
# in the common case of no weighting syntax, just return the prompt as is
|
|
if len(prompt_list) > 1:
|
|
return ','.join([':'.join([x['prompt'], str(x['weight'])]) for x in prompt_list])
|
|
else:
|
|
return prompt_list[0]['prompt']
|
|
|
|
# image can either be a file path on disk or a base64-encoded
|
|
# representation of the file's contents
|
|
def calculate_init_img_hash(image_string):
|
|
prefix = 'data:image/png;base64,'
|
|
hash = None
|
|
if image_string.startswith(prefix):
|
|
imagebase64 = image_string[len(prefix):]
|
|
imagedata = base64.b64decode(imagebase64)
|
|
with open('outputs/test.png','wb') as file:
|
|
file.write(imagedata)
|
|
sha = hashlib.sha256()
|
|
sha.update(imagedata)
|
|
hash = sha.hexdigest()
|
|
else:
|
|
hash = sha256(image_string)
|
|
return hash
|
|
|
|
# Bah. This should be moved somewhere else...
|
|
def sha256(path):
|
|
sha = hashlib.sha256()
|
|
with open(path,'rb') as f:
|
|
while True:
|
|
data = f.read(65536)
|
|
if not data:
|
|
break
|
|
sha.update(data)
|
|
return sha.hexdigest()
|
|
|
|
def legacy_metadata_load(meta,pathname) -> Args:
|
|
opt = Args()
|
|
if 'Dream' in meta and len(meta['Dream']) > 0:
|
|
dream_prompt = meta['Dream']
|
|
opt.parse_cmd(dream_prompt)
|
|
else: # if nothing else, we can get the seed
|
|
match = re.search('\d+\.(\d+)',pathname)
|
|
if match:
|
|
seed = match.groups()[0]
|
|
opt.seed = seed
|
|
else:
|
|
opt.prompt = ''
|
|
opt.seed = 0
|
|
return opt
|
|
|