InvokeAI/ldm/util.py
Lincoln Stein 6afc0f9b38 add ability to import and edit alternative models online
- !import_model <path/to/model/weights> will import a new model,
  prompt the user for its name and description, write it to the
  models.yaml file, and load it.

- !edit_model <model_name> will bring up a previously-defined model
  and prompt the user to edit its descriptive fields.

Example of !import_model

<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:

Name for this model: <b>waifu-diffusion</b>
Description of this model: <b>Waifu Diffusion v1.3</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu Diffusion v1.3
  height: 512
  weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
  width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
   | LatentDiffusion: Running in eps-prediction mode
   | DiffusionWrapper has 859.52 M params.
   | Making attention of type 'vanilla' with 512 in_channels
   | Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
   | Making attention of type 'vanilla' with 512 in_channels
   | Using faster float16 precision
</pre>

Example of !edit_model

<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512

>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu diffusion v1.4beta
  weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
  height: 512
  width: 512

OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
2022-10-13 23:48:07 -04:00

238 lines
7.0 KiB
Python

import importlib
import torch
import numpy as np
import math
from collections import abc
from einops import rearrange
from functools import partial
import multiprocessing as mp
from threading import Thread
from queue import Queue
from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new('RGB', wh, color='white')
draw = ImageDraw.Draw(txt)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = '\n'.join(
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
)
try:
draw.text((0, 0), lines, fill='black', font=font)
except UnicodeEncodeError:
print('Cant encode string for logging. Skipping.')
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(
f' | {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
)
return total_params
def instantiate_from_config(config, **kwargs):
if not 'target' in config:
if config == '__is_first_stage__':
return None
elif config == '__is_unconditional__':
return None
raise KeyError('Expected key `target` to instantiate.')
return get_obj_from_str(config['target'])(
**config.get('params', dict()), **kwargs
)
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit('.', 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
# create dummy dataset instance
# run prefetching
if idx_to_fn:
res = func(data, worker_id=idx)
else:
res = func(data)
Q.put([idx, res])
Q.put('Done')
def parallel_data_prefetch(
func: callable,
data,
n_proc,
target_data_type='ndarray',
cpu_intensive=True,
use_worker_id=False,
):
# if target_data_type not in ["ndarray", "list"]:
# raise ValueError(
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
# )
if isinstance(data, np.ndarray) and target_data_type == 'list':
raise ValueError('list expected but function got ndarray.')
elif isinstance(data, abc.Iterable):
if isinstance(data, dict):
print(
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
)
data = list(data.values())
if target_data_type == 'ndarray':
data = np.asarray(data)
else:
data = list(data)
else:
raise TypeError(
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
)
if cpu_intensive:
Q = mp.Queue(1000)
proc = mp.Process
else:
Q = Queue(1000)
proc = Thread
# spawn processes
if target_data_type == 'ndarray':
arguments = [
[func, Q, part, i, use_worker_id]
for i, part in enumerate(np.array_split(data, n_proc))
]
else:
step = (
int(len(data) / n_proc + 1)
if len(data) % n_proc != 0
else int(len(data) / n_proc)
)
arguments = [
[func, Q, part, i, use_worker_id]
for i, part in enumerate(
[data[i : i + step] for i in range(0, len(data), step)]
)
]
processes = []
for i in range(n_proc):
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
processes += [p]
# start processes
print(f'Start prefetching...')
import time
start = time.time()
gather_res = [[] for _ in range(n_proc)]
try:
for p in processes:
p.start()
k = 0
while k < n_proc:
# get result
res = Q.get()
if res == 'Done':
k += 1
else:
gather_res[res[0]] = res[1]
except Exception as e:
print('Exception: ', e)
for p in processes:
p.terminate()
raise e
finally:
for p in processes:
p.join()
print(f'Prefetching complete. [{time.time() - start} sec.]')
if target_data_type == 'ndarray':
if not isinstance(gather_res[0], np.ndarray):
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
# order outputs
return np.concatenate(gather_res, axis=0)
elif target_data_type == 'list':
out = []
for r in gather_res:
out.extend(r)
return out
else:
return gather_res
def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1
rand_val = torch.rand(res[0]+1, res[1]+1)
angles = 2*math.pi*rand_val
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1).to(device)
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]).to(device)
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]).to(device)
t = fade(grid[:shape[0], :shape[1]])
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(device)