InvokeAI/server/models.py

260 lines
7.1 KiB
Python

# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
from base64 import urlsafe_b64encode
import json
import string
from copy import deepcopy
from datetime import datetime, timezone
from enum import Enum
from typing import Any, Dict, List, Union
from uuid import uuid4
class DreamBase():
# Id
id: str
# Initial Image
enable_init_image: bool
initimg: string = None
# Img2Img
enable_img2img: bool # TODO: support this better
strength: float = 0 # TODO: name this something related to img2img to make it clearer?
fit = None # Fit initial image dimensions
# Generation
enable_generate: bool
prompt: string = ""
seed: int = 0 # 0 is random
steps: int = 10
width: int = 512
height: int = 512
cfg_scale: float = 7.5
threshold: float = 0.0
perlin: float = 0.0
sampler_name: string = 'klms'
seamless: bool = False
hires_fix: bool = False
model: str = None # The model to use (currently unused)
embeddings = None # The embeddings to use (currently unused)
progress_images: bool = False
progress_latents: bool = False
# GFPGAN
enable_gfpgan: bool
facetool_strength: float = 0
# Upscale
enable_upscale: bool
upscale: None
upscale_level: int = None
upscale_strength: float = 0.75
# Embiggen
enable_embiggen: bool
embiggen: Union[None, List[float]] = None
embiggen_tiles: Union[None, List[int]] = None
# Metadata
time: int
def __init__(self):
self.id = urlsafe_b64encode(uuid4().bytes).decode('ascii')
def parse_json(self, j, new_instance=False):
# Id
if 'id' in j and not new_instance:
self.id = j.get('id')
# Initial Image
self.enable_init_image = 'enable_init_image' in j and bool(j.get('enable_init_image'))
if self.enable_init_image:
self.initimg = j.get('initimg')
# Img2Img
self.enable_img2img = 'enable_img2img' in j and bool(j.get('enable_img2img'))
if self.enable_img2img:
self.strength = float(j.get('strength'))
self.fit = 'fit' in j
# Generation
self.enable_generate = 'enable_generate' in j and bool(j.get('enable_generate'))
if self.enable_generate:
self.prompt = j.get('prompt')
self.seed = int(j.get('seed'))
self.steps = int(j.get('steps'))
self.width = int(j.get('width'))
self.height = int(j.get('height'))
self.cfg_scale = float(j.get('cfgscale') or j.get('cfg_scale'))
self.threshold = float(j.get('threshold'))
self.perlin = float(j.get('perlin'))
self.sampler_name = j.get('sampler') or j.get('sampler_name')
# model: str = None # The model to use (currently unused)
# embeddings = None # The embeddings to use (currently unused)
self.seamless = 'seamless' in j
self.hires_fix = 'hires_fix' in j
self.progress_images = 'progress_images' in j
self.progress_latents = 'progress_latents' in j
# GFPGAN
self.enable_gfpgan = 'enable_gfpgan' in j and bool(j.get('enable_gfpgan'))
if self.enable_gfpgan:
self.facetool_strength = float(j.get('facetool_strength'))
# Upscale
self.enable_upscale = 'enable_upscale' in j and bool(j.get('enable_upscale'))
if self.enable_upscale:
self.upscale_level = j.get('upscale_level')
self.upscale_strength = j.get('upscale_strength')
self.upscale = None if self.upscale_level in {None,''} else [int(self.upscale_level),float(self.upscale_strength)]
# Embiggen
self.enable_embiggen = 'enable_embiggen' in j and bool(j.get('enable_embiggen'))
if self.enable_embiggen:
self.embiggen = j.get('embiggen')
self.embiggen_tiles = j.get('embiggen_tiles')
# Metadata
self.time = int(j.get('time')) if ('time' in j and not new_instance) else int(datetime.now(timezone.utc).timestamp())
class DreamResult(DreamBase):
# Result
has_upscaled: False
has_gfpgan: False
# TODO: use something else for state tracking
images_generated: int = 0
images_upscaled: int = 0
def __init__(self):
super().__init__()
def clone_without_img(self):
copy = deepcopy(self)
copy.initimg = None
return copy
def to_json(self):
copy = deepcopy(self)
copy.initimg = None
j = json.dumps(copy.__dict__)
return j
@staticmethod
def from_json(j, newTime: bool = False):
d = DreamResult()
d.parse_json(j)
return d
# TODO: switch this to a pipelined request, with pluggable steps
# Will likely require generator code changes to accomplish
class JobRequest(DreamBase):
# Iteration
iterations: int = 1
variation_amount = None
with_variations = None
# Results
results: List[DreamResult] = []
def __init__(self):
super().__init__()
def newDreamResult(self) -> DreamResult:
result = DreamResult()
result.parse_json(self.__dict__, new_instance=True)
return result
@staticmethod
def from_json(j):
job = JobRequest()
job.parse_json(j)
# Metadata
job.time = int(j.get('time')) if ('time' in j) else int(datetime.now(timezone.utc).timestamp())
# Iteration
if job.enable_generate:
job.iterations = int(j.get('iterations'))
job.variation_amount = float(j.get('variation_amount'))
job.with_variations = j.get('with_variations')
return job
class ProgressType(Enum):
GENERATION = 1
UPSCALING_STARTED = 2
UPSCALING_DONE = 3
class Signal():
event: str
data = None
room: str = None
broadcast: bool = False
def __init__(self, event: str, data, room: str = None, broadcast: bool = False):
self.event = event
self.data = data
self.room = room
self.broadcast = broadcast
@staticmethod
def image_progress(jobId: str, dreamId: str, step: int, totalSteps: int, progressType: ProgressType = ProgressType.GENERATION, hasProgressImage: bool = False):
return Signal('dream_progress', {
'jobId': jobId,
'dreamId': dreamId,
'step': step,
'totalSteps': totalSteps,
'hasProgressImage': hasProgressImage,
'progressType': progressType.name
}, room=jobId, broadcast=True)
# TODO: use a result id or something? Like a sub-job
@staticmethod
def image_result(jobId: str, dreamId: str, dreamResult: DreamResult):
return Signal('dream_result', {
'jobId': jobId,
'dreamId': dreamId,
'dreamRequest': dreamResult.clone_without_img().__dict__
}, room=jobId, broadcast=True)
@staticmethod
def job_started(jobId: str):
return Signal('job_started', {
'jobId': jobId
}, room=jobId, broadcast=True)
@staticmethod
def job_done(jobId: str):
return Signal('job_done', {
'jobId': jobId
}, room=jobId, broadcast=True)
@staticmethod
def job_canceled(jobId: str):
return Signal('job_canceled', {
'jobId': jobId
}, room=jobId, broadcast=True)
class PaginatedItems():
items: List[Any]
page: int # Current Page
pages: int # Total number of pages
per_page: int # Number of items per page
total: int # Total number of items in result
def __init__(self, items: List[Any], page: int, pages: int, per_page: int, total: int):
self.items = items
self.page = page
self.pages = pages
self.per_page = per_page
self.total = total
def to_json(self):
return json.dumps(self.__dict__)