InvokeAI/ldm/invoke/concepts_lib.py
Scott Lahteine 7d8d4bcafb
Global replace [ \t]+$, add "GB" (#1751)
* "GB"

* Replace [ \t]+$ global

Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
2022-12-19 16:36:39 +00:00

170 lines
7.1 KiB
Python

"""
Query and install embeddings from the HuggingFace SD Concepts Library
at https://huggingface.co/sd-concepts-library.
The interface is through the Concepts() object.
"""
import os
import re
import traceback
from typing import Callable
from urllib import request, error as ul_error
from huggingface_hub import HfFolder, hf_hub_url, ModelSearchArguments, ModelFilter, HfApi
from ldm.invoke.globals import Globals
class Concepts(object):
def __init__(self, root=None):
'''
Initialize the Concepts object. May optionally pass a root directory.
'''
self.root = root or Globals.root
self.hf_api = HfApi()
self.concept_list = None
self.concepts_loaded = dict()
self.triggers = dict() # concept name to trigger phrase
self.concept_names = dict() # trigger phrase to concept name
self.match_trigger = re.compile('(<[\w\- >]+>)') # trigger is slightly less restrictive than HF concept name
self.match_concept = re.compile('<([\w\-]+)>') # HF concept name can only contain A-Za-z0-9_-
def list_concepts(self)->list:
'''
Return a list of all the concepts by name, without the 'sd-concepts-library' part.
'''
if self.concept_list is not None:
return self.concept_list
try:
models = self.hf_api.list_models(filter=ModelFilter(model_name='sd-concepts-library/'))
self.concept_list = [a.id.split('/')[1] for a in models]
except Exception as e:
print(f' ** WARNING: Hugging Face textual inversion concepts libraries could not be loaded. The error was {str(e)}.')
print(' ** You may load .bin and .pt file(s) manually using the --embedding_directory argument.')
return self.concept_list
def get_concept_model_path(self, concept_name:str)->str:
'''
Returns the path to the 'learned_embeds.bin' file in
the named concept. Returns None if invalid or cannot
be downloaded.
'''
if not concept_name in self.list_concepts():
print(f'This concept is not known to the Hugging Face library. Generation will continue without the concept.')
return None
return self.get_concept_file(concept_name.lower(),'learned_embeds.bin')
def concept_to_trigger(self, concept_name:str)->str:
'''
Given a concept name returns its trigger by looking in the
"token_identifier.txt" file.
'''
if concept_name in self.triggers:
return self.triggers[concept_name]
file = self.get_concept_file(concept_name, 'token_identifier.txt', local_only=True)
if not file:
return None
with open(file,'r') as f:
trigger = f.readline()
trigger = trigger.strip()
self.triggers[concept_name] = trigger
self.concept_names[trigger] = concept_name
return trigger
def trigger_to_concept(self, trigger:str)->str:
'''
Given a trigger phrase, maps it to the concept library name.
Only works if concept_to_trigger() has previously been called
on this library. There needs to be a persistent database for
this.
'''
concept = self.concept_names.get(trigger,None)
return f'<{concept}>' if concept else f'{trigger}'
def replace_triggers_with_concepts(self, prompt:str)->str:
'''
Given a prompt string that contains <trigger> tags, replace these
tags with the concept name. The reason for this is so that the
concept names get stored in the prompt metadata. There is no
controlling of colliding triggers in the SD library, so it is
better to store the concept name (unique) than the concept trigger
(not necessarily unique!)
'''
if not prompt:
return prompt
triggers = self.match_trigger.findall(prompt)
if not triggers:
return prompt
def do_replace(match)->str:
return self.trigger_to_concept(match.group(1)) or f'<{match.group(1)}>'
return self.match_trigger.sub(do_replace, prompt)
def replace_concepts_with_triggers(self, prompt:str, load_concepts_callback: Callable[[list], any])->str:
'''
Given a prompt string that contains `<concept_name>` tags, replace
these tags with the appropriate trigger.
If any `<concept_name>` tags are found, `load_concepts_callback()` is called with a list
of `concepts_name` strings.
'''
concepts = self.match_concept.findall(prompt)
if not concepts:
return prompt
load_concepts_callback(concepts)
def do_replace(match)->str:
return self.concept_to_trigger(match.group(1)) or f'<{match.group(1)}>'
return self.match_concept.sub(do_replace, prompt)
def get_concept_file(self, concept_name:str, file_name:str='learned_embeds.bin' , local_only:bool=False)->str:
if not self.concept_is_downloaded(concept_name) and not local_only:
self.download_concept(concept_name)
path = os.path.join(self._concept_path(concept_name), file_name)
return path if os.path.exists(path) else None
def concept_is_downloaded(self, concept_name)->bool:
concept_directory = self._concept_path(concept_name)
return os.path.exists(concept_directory)
def download_concept(self,concept_name)->bool:
repo_id = self._concept_id(concept_name)
dest = self._concept_path(concept_name)
access_token = HfFolder.get_token()
header = [("Authorization", f'Bearer {access_token}')] if access_token else []
opener = request.build_opener()
opener.addheaders = header
request.install_opener(opener)
os.makedirs(dest, exist_ok=True)
succeeded = True
bytes = 0
def tally_download_size(chunk, size, total):
nonlocal bytes
if chunk==0:
bytes += total
print(f'>> Downloading {repo_id}...',end='')
try:
for file in ('README.md','learned_embeds.bin','token_identifier.txt','type_of_concept.txt'):
url = hf_hub_url(repo_id, file)
request.urlretrieve(url, os.path.join(dest,file),reporthook=tally_download_size)
except ul_error.HTTPError as e:
if e.code==404:
print(f'This concept is not known to the Hugging Face library. Generation will continue without the concept.')
else:
print(f'Failed to download {concept_name}/{file} ({str(e)}. Generation will continue without the concept.)')
os.rmdir(dest)
return False
except ul_error.URLError as e:
print(f'ERROR: {str(e)}. This may reflect a network issue. Generation will continue without the concept.')
os.rmdir(dest)
return False
print('...{:.2f}Kb'.format(bytes/1024))
return succeeded
def _concept_id(self, concept_name:str)->str:
return f'sd-concepts-library/{concept_name}'
def _concept_path(self, concept_name:str)->str:
return os.path.join(self.root,'models','sd-concepts-library',concept_name)