mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
1440 lines
56 KiB
Python
1440 lines
56 KiB
Python
"""This module manages the InvokeAI `models.yaml` file, mapping
|
|
symbolic diffusers model names to the paths and repo_ids used
|
|
by the underlying `from_pretrained()` call.
|
|
|
|
For fetching models, use manager.get_model('symbolic name'). This will
|
|
return a SDModelInfo object that contains the following attributes:
|
|
|
|
* context -- a context manager Generator that loads and locks the
|
|
model into GPU VRAM and returns the model for use.
|
|
See below for usage.
|
|
* name -- symbolic name of the model
|
|
* type -- SDModelType of the model
|
|
* hash -- unique hash for the model
|
|
* location -- path or repo_id of the model
|
|
* revision -- revision of the model if coming from a repo id,
|
|
e.g. 'fp16'
|
|
* precision -- torch precision of the model
|
|
|
|
Typical usage:
|
|
|
|
from invokeai.backend import ModelManager
|
|
|
|
manager = ModelManager(
|
|
config='./configs/models.yaml',
|
|
max_cache_size=8
|
|
) # gigabytes
|
|
|
|
model_info = manager.get_model('stable-diffusion-1.5', SDModelType.Diffusers)
|
|
with model_info.context as my_model:
|
|
my_model.latents_from_embeddings(...)
|
|
|
|
The manager uses the underlying ModelCache class to keep
|
|
frequently-used models in RAM and move them into GPU as needed for
|
|
generation operations. The optional `max_cache_size` argument
|
|
indicates the maximum size the cache can grow to, in gigabytes. The
|
|
underlying ModelCache object can be accessed using the manager's "cache"
|
|
attribute.
|
|
|
|
Because the model manager can return multiple different types of
|
|
models, you may wish to add additional type checking on the class
|
|
of model returned. To do this, provide the option `model_type`
|
|
parameter:
|
|
|
|
model_info = manager.get_model(
|
|
'clip-tokenizer',
|
|
model_type=SDModelType.Tokenizer
|
|
)
|
|
|
|
This will raise an InvalidModelError if the format defined in the
|
|
config file doesn't match the requested model type.
|
|
|
|
MODELS.YAML
|
|
|
|
The general format of a models.yaml section is:
|
|
|
|
type-of-model/name-of-model:
|
|
format: folder|ckpt|safetensors
|
|
repo_id: owner/repo
|
|
path: /path/to/local/file/or/directory
|
|
subfolder: subfolder-name
|
|
|
|
The type of model is given in the stanza key, and is one of
|
|
{diffusers, ckpt, vae, text_encoder, tokenizer, unet, scheduler,
|
|
safety_checker, feature_extractor, lora, textual_inversion}, and
|
|
correspond to items in the SDModelType enum defined in model_cache.py
|
|
|
|
The format indicates whether the model is organized as a folder with
|
|
model subdirectories, or is contained in a single checkpoint or
|
|
safetensors file.
|
|
|
|
One, but not both, of repo_id and path are provided. repo_id is the
|
|
HuggingFace repository ID of the model, and path points to the file or
|
|
directory on disk.
|
|
|
|
If subfolder is provided, then the model exists in a subdirectory of
|
|
the main model. These are usually named after the model type, such as
|
|
"unet".
|
|
|
|
This example summarizes the two ways of getting a non-diffuser model:
|
|
|
|
text_encoder/clip-test-1:
|
|
format: folder
|
|
repo_id: openai/clip-vit-large-patch14
|
|
description: Returns standalone CLIPTextModel
|
|
|
|
text_encoder/clip-test-2:
|
|
format: folder
|
|
repo_id: stabilityai/stable-diffusion-2
|
|
subfolder: text_encoder
|
|
description: Returns the text_encoder in the subfolder of the diffusers model (just the encoder in RAM)
|
|
|
|
SUBMODELS:
|
|
|
|
It is also possible to fetch an isolated submodel from a diffusers
|
|
model. Use the `submodel` parameter to select which part:
|
|
|
|
vae = manager.get_model('stable-diffusion-1.5',submodel=SDModelType.Vae)
|
|
with vae.context as my_vae:
|
|
print(type(my_vae))
|
|
# "AutoencoderKL"
|
|
|
|
DISAMBIGUATION:
|
|
|
|
You may wish to use the same name for a related family of models. To
|
|
do this, disambiguate the stanza key with the model and and format
|
|
separated by "/". Example:
|
|
|
|
tokenizer/clip-large:
|
|
format: tokenizer
|
|
repo_id: openai/clip-vit-large-patch14
|
|
description: Returns standalone tokenizer
|
|
|
|
text_encoder/clip-large:
|
|
format: text_encoder
|
|
repo_id: openai/clip-vit-large-patch14
|
|
description: Returns standalone text encoder
|
|
|
|
You can now use the `model_type` argument to indicate which model you
|
|
want:
|
|
|
|
tokenizer = mgr.get('clip-large',model_type=SDModelType.Tokenizer)
|
|
encoder = mgr.get('clip-large',model_type=SDModelType.TextEncoder)
|
|
|
|
OTHER FUNCTIONS:
|
|
|
|
Other methods provided by ModelManager support importing, editing,
|
|
converting and deleting models.
|
|
|
|
"""
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import re
|
|
import textwrap
|
|
import shutil
|
|
import sys
|
|
import time
|
|
import traceback
|
|
import warnings
|
|
from dataclasses import dataclass
|
|
from enum import Enum, auto
|
|
from packaging import version
|
|
from pathlib import Path
|
|
from typing import Callable, Optional, List, Tuple, Union, types
|
|
from shutil import move, rmtree
|
|
from typing import Any, Optional, Union, Callable, Dict, List, types
|
|
|
|
import safetensors
|
|
import safetensors.torch
|
|
import torch
|
|
from diffusers import AutoencoderKL
|
|
from diffusers.utils import is_safetensors_available
|
|
from huggingface_hub import scan_cache_dir
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
from invokeai.backend.util import CUDA_DEVICE, ask_user, download_with_resume
|
|
from ..install.model_install_backend import Dataset_path, hf_download_with_resume
|
|
from .model_cache import (ModelCache, ModelLocker, SDModelType,
|
|
SilenceWarnings)
|
|
# We are only starting to number the config file with release 3.
|
|
# The config file version doesn't have to start at release version, but it will help
|
|
# reduce confusion.
|
|
CONFIG_FILE_VERSION='3.0.0'
|
|
|
|
# wanted to use pydantic here, but Generator objects not supported
|
|
@dataclass
|
|
class SDModelInfo():
|
|
context: ModelLocker
|
|
name: str
|
|
type: SDModelType
|
|
hash: str
|
|
location: Union[Path,str]
|
|
precision: torch.dtype
|
|
revision: str = None
|
|
_cache: ModelCache = None
|
|
|
|
def __enter__(self):
|
|
return self.context.__enter__()
|
|
|
|
def __exit__(self,*args, **kwargs):
|
|
self.context.__exit__(*args, **kwargs)
|
|
|
|
class InvalidModelError(Exception):
|
|
"Raised when an invalid model is requested"
|
|
pass
|
|
|
|
class SDLegacyType(Enum):
|
|
V1 = auto()
|
|
V1_INPAINT = auto()
|
|
V2 = auto()
|
|
V2_e = auto()
|
|
V2_v = auto()
|
|
UNKNOWN = auto()
|
|
|
|
MAX_CACHE_SIZE = 6.0 # GB
|
|
|
|
class ModelManager(object):
|
|
"""
|
|
High-level interface to model management.
|
|
"""
|
|
|
|
logger: types.ModuleType = logger
|
|
|
|
def __init__(
|
|
self,
|
|
config: Union[Path, DictConfig, str],
|
|
device_type: torch.device = CUDA_DEVICE,
|
|
precision: torch.dtype = torch.float16,
|
|
max_cache_size=MAX_CACHE_SIZE,
|
|
sequential_offload=False,
|
|
logger: types.ModuleType = logger,
|
|
):
|
|
"""
|
|
Initialize with the path to the models.yaml config file.
|
|
Optional parameters are the torch device type, precision, max_models,
|
|
and sequential_offload boolean. Note that the default device
|
|
type and precision are set up for a CUDA system running at half precision.
|
|
"""
|
|
if isinstance(config, DictConfig):
|
|
self.config_path = None
|
|
self.config = config
|
|
elif isinstance(config,(str,Path)):
|
|
self.config_path = config
|
|
self.config = OmegaConf.load(self.config_path)
|
|
else:
|
|
raise ValueError('config argument must be an OmegaConf object, a Path or a string')
|
|
|
|
# check config version number and update on disk/RAM if necessary
|
|
self.globals = InvokeAIAppConfig.get_config()
|
|
self._update_config_file_version()
|
|
self.logger = logger
|
|
self.cache = ModelCache(
|
|
max_cache_size=max_cache_size,
|
|
execution_device = device_type,
|
|
precision = precision,
|
|
sequential_offload = sequential_offload,
|
|
logger = logger,
|
|
)
|
|
self.cache_keys = dict()
|
|
|
|
def model_exists(
|
|
self,
|
|
model_name: str,
|
|
model_type: SDModelType = SDModelType.Diffusers,
|
|
) -> bool:
|
|
"""
|
|
Given a model name, returns True if it is a valid
|
|
identifier.
|
|
"""
|
|
model_key = self.create_key(model_name, model_type)
|
|
return model_key in self.config
|
|
|
|
def create_key(self, model_name: str, model_type: SDModelType) -> str:
|
|
return f"{model_type}/{model_name}"
|
|
|
|
def parse_key(self, model_key: str) -> Tuple[str, SDModelType]:
|
|
model_type_str, model_name = model_key.split('/', 1)
|
|
try:
|
|
model_type = SDModelType(model_type_str)
|
|
return (model_name, model_type)
|
|
except:
|
|
raise Exception(f"Unknown model type: {model_type_str}")
|
|
|
|
def get_model(
|
|
self,
|
|
model_name: str,
|
|
model_type: SDModelType = SDModelType.Diffusers,
|
|
submodel: Optional[SDModelType] = None,
|
|
) -> SDModelInfo:
|
|
"""Given a model named identified in models.yaml, return
|
|
an SDModelInfo object describing it.
|
|
:param model_name: symbolic name of the model in models.yaml
|
|
:param model_type: SDModelType enum indicating the type of model to return
|
|
:param submodel: an SDModelType enum indicating the portion of
|
|
the model to retrieve (e.g. SDModelType.Vae)
|
|
|
|
If not provided, the model_type will be read from the `format` field
|
|
of the corresponding stanza. If provided, the model_type will be used
|
|
to disambiguate stanzas in the configuration file. The default is to
|
|
assume a diffusers pipeline. The behavior is illustrated here:
|
|
|
|
[models.yaml]
|
|
diffusers/test1:
|
|
repo_id: foo/bar
|
|
description: Typical diffusers pipeline
|
|
|
|
lora/test1:
|
|
repo_id: /tmp/loras/test1.safetensors
|
|
description: Typical lora file
|
|
|
|
test1_pipeline = mgr.get_model('test1')
|
|
# returns a StableDiffusionGeneratorPipeline
|
|
|
|
test1_vae1 = mgr.get_model('test1', submodel=SDModelType.Vae)
|
|
# returns the VAE part of a diffusers model as an AutoencoderKL
|
|
|
|
test1_vae2 = mgr.get_model('test1', model_type=SDModelType.Diffusers, submodel=SDModelType.Vae)
|
|
# does the same thing as the previous statement. Note that model_type
|
|
# is for the parent model, and submodel is for the part
|
|
|
|
test1_lora = mgr.get_model('test1', model_type=SDModelType.Lora)
|
|
# returns a LoRA embed (as a 'dict' of tensors)
|
|
|
|
test1_encoder = mgr.get_modelI('test1', model_type=SDModelType.TextEncoder)
|
|
# raises an InvalidModelError
|
|
|
|
"""
|
|
model_key = self.create_key(model_name, model_type)
|
|
if model_key not in self.config:
|
|
raise InvalidModelError(
|
|
f'"{model_key}" is not a known model name. Please check your models.yaml file'
|
|
)
|
|
|
|
# get the required loading info out of the config file
|
|
mconfig = self.config[model_key]
|
|
|
|
# type already checked as it's part of key
|
|
if model_type == SDModelType.Diffusers:
|
|
# intercept stanzas that point to checkpoint weights and replace them
|
|
# with the equivalent diffusers model
|
|
if mconfig.format in ["ckpt", "safetensors"]:
|
|
location = self.convert_ckpt_and_cache(mconfig)
|
|
elif mconfig.get('path'):
|
|
location = self.globals.root_dir / mconfig.get('path')
|
|
else:
|
|
location = mconfig.get('repo_id')
|
|
elif p := mconfig.get('path'):
|
|
location = self.globals.root_dir / p
|
|
elif r := mconfig.get('repo_id'):
|
|
location = r
|
|
elif w := mconfig.get('weights'):
|
|
location = self.globals.root_dir / w
|
|
else:
|
|
location = None
|
|
|
|
revision = mconfig.get('revision')
|
|
if model_type in [SDModelType.Lora, SDModelType.TextualInversion]:
|
|
hash = "<NO_HASH>" # TODO:
|
|
else:
|
|
hash = self.cache.model_hash(location, revision)
|
|
|
|
# If the caller is asking for part of the model and the config indicates
|
|
# an external replacement for that field, then we fetch the replacement
|
|
if submodel and mconfig.get(submodel):
|
|
location = mconfig.get(submodel).get('path') \
|
|
or mconfig.get(submodel).get('repo_id')
|
|
model_type = submodel
|
|
submodel = None
|
|
|
|
# to support the traditional way of attaching a VAE
|
|
# to a model, we hacked in `attach_model_part`
|
|
# TODO:
|
|
if model_type == SDModelType.Vae and "vae" in mconfig:
|
|
print("NOT_IMPLEMENTED - RETURN CUSTOM VAE")
|
|
|
|
model_context = self.cache.get_model(
|
|
location,
|
|
model_type = model_type,
|
|
revision = revision,
|
|
submodel = submodel,
|
|
)
|
|
|
|
# in case we need to communicate information about this
|
|
# model to the cache manager, then we need to remember
|
|
# the cache key
|
|
self.cache_keys[model_key] = model_context.key
|
|
|
|
return SDModelInfo(
|
|
context = model_context,
|
|
name = model_name,
|
|
type = submodel or model_type,
|
|
hash = hash,
|
|
location = location,
|
|
revision = revision,
|
|
precision = self.cache.precision,
|
|
_cache = self.cache
|
|
)
|
|
|
|
def default_model(self) -> Optional[Tuple[str, SDModelType]]:
|
|
"""
|
|
Returns the name of the default model, or None
|
|
if none is defined.
|
|
"""
|
|
for model_name, model_type in self.model_names():
|
|
model_key = self.create_key(model_name, model_type)
|
|
if self.config[model_key].get("default"):
|
|
return (model_name, model_type)
|
|
return self.model_names()[0][0]
|
|
|
|
def set_default_model(self, model_name: str, model_type: SDModelType=SDModelType.Diffusers) -> None:
|
|
"""
|
|
Set the default model. The change will not take
|
|
effect until you call model_manager.commit()
|
|
"""
|
|
assert self.model_exists(model_name, model_type), f"unknown model '{model_name}'"
|
|
|
|
config = self.config
|
|
for model_name, model_type in self.model_names():
|
|
key = self.create_key(model_name, model_type)
|
|
config[key].pop("default", None)
|
|
config[self.create_key(model_name, model_type)]["default"] = True
|
|
|
|
def model_info(
|
|
self,
|
|
model_name: str,
|
|
model_type: SDModelType=SDModelType.Diffusers,
|
|
) -> dict:
|
|
"""
|
|
Given a model name returns the OmegaConf (dict-like) object describing it.
|
|
"""
|
|
if not self.model_exists(model_name, model_type):
|
|
return None
|
|
return self.config[self.create_key(model_name, model_type)]
|
|
|
|
def model_names(self) -> List[Tuple[str, SDModelType]]:
|
|
"""
|
|
Return a list of (str, SDModelType) corresponding to all models
|
|
known to the configuration.
|
|
"""
|
|
return [(self.parse_key(x)) for x in self.config.keys() if isinstance(self.config[x], DictConfig)]
|
|
|
|
def is_legacy(self, model_name: str, model_type: SDModelType.Diffusers) -> bool:
|
|
"""
|
|
Return true if this is a legacy (.ckpt) model
|
|
"""
|
|
# if we are converting legacy files automatically, then
|
|
# there are no legacy ckpts!
|
|
if self.globals.ckpt_convert:
|
|
return False
|
|
info = self.model_info(model_name, model_type)
|
|
if "weights" in info and info["weights"].endswith((".ckpt", ".safetensors")):
|
|
return True
|
|
return False
|
|
|
|
def list_models(self, model_type: SDModelType=None) -> dict[str,dict[str,str]]:
|
|
"""
|
|
Return a dict of models, in format [model_type][model_name], with
|
|
following fields:
|
|
model_name
|
|
model_type
|
|
format
|
|
description
|
|
status
|
|
# for folders only
|
|
repo_id
|
|
path
|
|
subfolder
|
|
vae
|
|
# for ckpts only
|
|
config
|
|
weights
|
|
vae
|
|
|
|
Please use model_manager.models() to get all the model names,
|
|
model_manager.model_info('model-name') to get the stanza for the model
|
|
named 'model-name', and model_manager.config to get the full OmegaConf
|
|
object derived from models.yaml
|
|
"""
|
|
models = {}
|
|
for model_key in sorted(self.config, key=str.casefold):
|
|
stanza = self.config[model_key]
|
|
# don't include VAEs in listing (legacy style)
|
|
if "config" in stanza and "/VAE/" in stanza["config"]:
|
|
continue
|
|
if model_key.startswith('_'):
|
|
continue
|
|
|
|
model_name, stanza_type = self.parse_key(model_key)
|
|
if model_type is not None and model_type != stanza_type:
|
|
continue
|
|
|
|
if stanza_type not in models:
|
|
models[stanza_type] = dict()
|
|
|
|
models[stanza_type][model_name] = dict()
|
|
|
|
model_format = stanza.get('format')
|
|
|
|
# Common Attribs
|
|
description = stanza.get("description", None)
|
|
models[stanza_type][model_name].update(
|
|
model_name=model_name,
|
|
model_type=stanza_type,
|
|
format=model_format,
|
|
description=description,
|
|
status="unknown", # TODO: no more status as model loaded separately
|
|
)
|
|
|
|
# Checkpoint Config Parse
|
|
if model_format in ["ckpt","safetensors"]:
|
|
models[stanza_type][model_name].update(
|
|
config = str(stanza.get("config", None)),
|
|
weights = str(stanza.get("weights", None)),
|
|
vae = str(stanza.get("vae", None)),
|
|
)
|
|
|
|
# Diffusers Config Parse
|
|
elif model_format == "folder":
|
|
if vae := stanza.get("vae", None):
|
|
if isinstance(vae, DictConfig):
|
|
vae = dict(
|
|
repo_id = str(vae.get("repo_id", None)),
|
|
path = str(vae.get("path", None)),
|
|
subfolder = str(vae.get("subfolder", None)),
|
|
)
|
|
|
|
models[stanza_type][model_name].update(
|
|
vae = vae,
|
|
repo_id = str(stanza.get("repo_id", None)),
|
|
path = str(stanza.get("path", None)),
|
|
)
|
|
|
|
return models
|
|
|
|
def print_models(self) -> None:
|
|
"""
|
|
Print a table of models, their descriptions, and load status
|
|
"""
|
|
for model_type, model_dict in self.list_models().items():
|
|
for model_name, model_info in model_dict.items():
|
|
line = f'{model_info["model_name"]:25s} {model_info["status"]:>15s} {model_info["model_type"]:10s} {model_info["description"]}'
|
|
if model_info["status"] in ["in gpu","locked in gpu"]:
|
|
line = f"\033[1m{line}\033[0m"
|
|
print(line)
|
|
|
|
def del_model(
|
|
self,
|
|
model_name: str,
|
|
model_type: SDModelType.Diffusers,
|
|
delete_files: bool = False,
|
|
):
|
|
"""
|
|
Delete the named model.
|
|
"""
|
|
model_key = self.create_key(model_name, model_type)
|
|
model_cfg = self.pop(model_key, None)
|
|
|
|
if model_cfg is None:
|
|
self.logger.error(
|
|
f"Unknown model {model_key}"
|
|
)
|
|
return
|
|
|
|
# TODO: some legacy?
|
|
#if model_name in self.stack:
|
|
# self.stack.remove(model_name)
|
|
|
|
if delete_files:
|
|
repo_id = model_cfg.get("repo_id", None)
|
|
path = self._abs_path(model_cfg.get("path", None))
|
|
weights = self._abs_path(model_cfg.get("weights", None))
|
|
if "weights" in model_cfg:
|
|
weights = self._abs_path(model_cfg["weights"])
|
|
self.logger.info(f"Deleting file {weights}")
|
|
Path(weights).unlink(missing_ok=True)
|
|
|
|
elif "path" in model_cfg:
|
|
path = self._abs_path(model_cfg["path"])
|
|
self.logger.info(f"Deleting directory {path}")
|
|
rmtree(path, ignore_errors=True)
|
|
|
|
elif "repo_id" in model_cfg:
|
|
repo_id = model_cfg["repo_id"]
|
|
self.logger.info(f"Deleting the cached model directory for {repo_id}")
|
|
self._delete_model_from_cache(repo_id)
|
|
|
|
def add_model(
|
|
self,
|
|
model_name: str,
|
|
model_type: SDModelType,
|
|
model_attributes: dict,
|
|
clobber: bool = False,
|
|
) -> None:
|
|
"""
|
|
Update the named model with a dictionary of attributes. Will fail with an
|
|
assertion error if the name already exists. Pass clobber=True to overwrite.
|
|
On a successful update, the config will be changed in memory and the
|
|
method will return True. Will fail with an assertion error if provided
|
|
attributes are incorrect or the model name is missing.
|
|
"""
|
|
|
|
if model_type == SDModelType.Fiffusers:
|
|
# TODO: automaticaly or manualy?
|
|
#assert "format" in model_attributes, 'missing required field "format"'
|
|
model_format = "ckpt" if "weights" in model_attributes else "diffusers"
|
|
|
|
if model_format == "diffusers":
|
|
assert (
|
|
"description" in model_attributes
|
|
), 'required field "description" is missing'
|
|
assert (
|
|
"path" in model_attributes or "repo_id" in model_attributes
|
|
), 'model must have either the "path" or "repo_id" fields defined'
|
|
|
|
elif model_format == "ckpt":
|
|
for field in ("description", "weights", "config"):
|
|
assert field in model_attributes, f"required field {field} is missing"
|
|
|
|
else:
|
|
assert "weights" in model_attributes and "description" in model_attributes
|
|
|
|
model_key = self.create_key(model_name, model_type)
|
|
|
|
assert (
|
|
clobber or model_key not in self.config
|
|
), f'attempt to overwrite existing model definition "{model_key}"'
|
|
|
|
self.config[model_key] = model_attributes
|
|
|
|
if "weights" in self.config[model_key]:
|
|
self.config[model_key]["weights"].replace("\\", "/")
|
|
|
|
if clobber and model_key in self.cache_keys:
|
|
self.cache.uncache_model(self.cache_keys[model_key])
|
|
del self.cache_keys[model_key]
|
|
|
|
def import_diffuser_model(
|
|
self,
|
|
repo_or_path: Union[str, Path],
|
|
model_name: str = None,
|
|
description: str = None,
|
|
vae: dict = None,
|
|
commit_to_conf: Path = None,
|
|
) -> bool:
|
|
"""
|
|
Attempts to install the indicated diffuser model and returns True if successful.
|
|
|
|
"repo_or_path" can be either a repo-id or a path-like object corresponding to the
|
|
top of a downloaded diffusers directory.
|
|
|
|
You can optionally provide a model name and/or description. If not provided,
|
|
then these will be derived from the repo name. If you provide a commit_to_conf
|
|
path to the configuration file, then the new entry will be committed to the
|
|
models.yaml file.
|
|
"""
|
|
model_name = model_name or Path(repo_or_path).stem
|
|
model_description = description or f"Imported diffusers model {model_name}"
|
|
new_config = dict(
|
|
description=model_description,
|
|
vae=vae,
|
|
format="diffusers",
|
|
)
|
|
if isinstance(repo_or_path, Path) and repo_or_path.exists():
|
|
new_config.update(path=str(repo_or_path))
|
|
else:
|
|
new_config.update(repo_id=repo_or_path)
|
|
|
|
self.add_model(model_name, SDModelType.Diffusers, new_config, True)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
return self.create_key(model_name, SDModelType.Diffusers)
|
|
|
|
def import_lora(
|
|
self,
|
|
path: Path,
|
|
model_name: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
):
|
|
"""
|
|
Creates an entry for the indicated lora file. Call
|
|
mgr.commit() to write out the configuration to models.yaml
|
|
"""
|
|
path = Path(path)
|
|
model_name = model_name or path.stem
|
|
model_description = description or f"LoRA model {model_name}"
|
|
self.add_model(
|
|
model_name,
|
|
SDModelType.Lora,
|
|
dict(
|
|
format="lora",
|
|
weights=str(path),
|
|
description=model_description,
|
|
),
|
|
True
|
|
)
|
|
|
|
def import_embedding(
|
|
self,
|
|
path: Path,
|
|
model_name: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
):
|
|
"""
|
|
Creates an entry for the indicated lora file. Call
|
|
mgr.commit() to write out the configuration to models.yaml
|
|
"""
|
|
path = Path(path)
|
|
if path.is_directory() and (path / "learned_embeds.bin").exists():
|
|
weights = path / "learned_embeds.bin"
|
|
else:
|
|
weights = path
|
|
|
|
model_name = model_name or path.stem
|
|
model_description = description or f"Textual embedding model {model_name}"
|
|
self.add_model(
|
|
model_name,
|
|
SDModelType.TextualInversion,
|
|
dict(
|
|
format="textual_inversion",
|
|
weights=str(weights),
|
|
description=model_description,
|
|
),
|
|
True
|
|
)
|
|
|
|
@classmethod
|
|
def probe_model_type(self, checkpoint: dict) -> SDLegacyType:
|
|
"""
|
|
Given a pickle or safetensors model object, probes contents
|
|
of the object and returns an SDLegacyType indicating its
|
|
format. Valid return values include:
|
|
SDLegacyType.V1
|
|
SDLegacyType.V1_INPAINT
|
|
SDLegacyType.V2 (V2 prediction type unknown)
|
|
SDLegacyType.V2_e (V2 using 'epsilon' prediction type)
|
|
SDLegacyType.V2_v (V2 using 'v_prediction' prediction type)
|
|
SDLegacyType.UNKNOWN
|
|
"""
|
|
global_step = checkpoint.get("global_step")
|
|
state_dict = checkpoint.get("state_dict") or checkpoint
|
|
|
|
try:
|
|
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
|
|
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
|
|
if global_step == 220000:
|
|
return SDLegacyType.V2_e
|
|
elif global_step == 110000:
|
|
return SDLegacyType.V2_v
|
|
else:
|
|
return SDLegacyType.V2
|
|
# otherwise we assume a V1 file
|
|
in_channels = state_dict[
|
|
"model.diffusion_model.input_blocks.0.0.weight"
|
|
].shape[1]
|
|
if in_channels == 9:
|
|
return SDLegacyType.V1_INPAINT
|
|
elif in_channels == 4:
|
|
return SDLegacyType.V1
|
|
else:
|
|
return SDLegacyType.UNKNOWN
|
|
except KeyError:
|
|
return SDLegacyType.UNKNOWN
|
|
|
|
def heuristic_import(
|
|
self,
|
|
path_url_or_repo: str,
|
|
model_name: Optional[str] = None,
|
|
description: Optional[str] = None,
|
|
model_config_file: Optional[Path] = None,
|
|
commit_to_conf: Optional[Path] = None,
|
|
config_file_callback: Optional[Callable[[Path], Path]] = None,
|
|
) -> str:
|
|
"""Accept a string which could be:
|
|
- a HF diffusers repo_id
|
|
- a URL pointing to a legacy .ckpt or .safetensors file
|
|
- a local path pointing to a legacy .ckpt or .safetensors file
|
|
- a local directory containing .ckpt and .safetensors files
|
|
- a local directory containing a diffusers model
|
|
|
|
After determining the nature of the model and downloading it
|
|
(if necessary), the file is probed to determine the correct
|
|
configuration file (if needed) and it is imported.
|
|
|
|
The model_name and/or description can be provided. If not, they will
|
|
be generated automatically.
|
|
|
|
If commit_to_conf is provided, the newly loaded model will be written
|
|
to the `models.yaml` file at the indicated path. Otherwise, the changes
|
|
will only remain in memory.
|
|
|
|
The routine will do its best to figure out the config file
|
|
needed to convert legacy checkpoint file, but if it can't it
|
|
will call the config_file_callback routine, if provided. The
|
|
callback accepts a single argument, the Path to the checkpoint
|
|
file, and returns a Path to the config file to use.
|
|
|
|
The (potentially derived) name of the model is returned on
|
|
success, or None on failure. When multiple models are added
|
|
from a directory, only the last imported one is returned.
|
|
|
|
"""
|
|
model_path: Path = None
|
|
thing = str(path_url_or_repo) # to save typing
|
|
|
|
self.logger.info(f"Probing {thing} for import")
|
|
|
|
if thing.startswith(("http:", "https:", "ftp:")):
|
|
self.logger.info(f"{thing} appears to be a URL")
|
|
model_path = self._resolve_path(
|
|
thing, "models/ldm/stable-diffusion-v1"
|
|
) # _resolve_path does a download if needed
|
|
|
|
elif Path(thing).is_file() and thing.endswith((".ckpt", ".safetensors")):
|
|
if Path(thing).stem in ["model", "diffusion_pytorch_model"]:
|
|
self.logger.debug(f"{Path(thing).name} appears to be part of a diffusers model. Skipping import")
|
|
return
|
|
else:
|
|
self.logger.debug(f"{thing} appears to be a checkpoint file on disk")
|
|
model_path = self._resolve_path(thing, "models/ldm/stable-diffusion-v1")
|
|
|
|
elif Path(thing).is_dir() and Path(thing, "model_index.json").exists():
|
|
self.logger.debug(f"{thing} appears to be a diffusers file on disk")
|
|
model_name = self.import_diffuser_model(
|
|
thing,
|
|
vae=dict(repo_id="stabilityai/sd-vae-ft-mse"),
|
|
model_name=model_name,
|
|
description=description,
|
|
commit_to_conf=commit_to_conf,
|
|
)
|
|
|
|
elif Path(thing).is_dir():
|
|
if (Path(thing) / "model_index.json").exists():
|
|
self.logger.debug(f"{thing} appears to be a diffusers model.")
|
|
model_name = self.import_diffuser_model(
|
|
thing, commit_to_conf=commit_to_conf
|
|
)
|
|
else:
|
|
self.logger.debug(f"{thing} appears to be a directory. Will scan for models to import")
|
|
for m in list(Path(thing).rglob("*.ckpt")) + list(
|
|
Path(thing).rglob("*.safetensors")
|
|
):
|
|
if model_name := self.heuristic_import(
|
|
str(m),
|
|
commit_to_conf=commit_to_conf,
|
|
config_file_callback=config_file_callback,
|
|
):
|
|
self.logger.info(f"{model_name} successfully imported")
|
|
return model_name
|
|
|
|
elif re.match(r"^[\w.+-]+/[\w.+-]+$", thing):
|
|
self.logger.debug(f"{thing} appears to be a HuggingFace diffusers repo_id")
|
|
model_name = self.import_diffuser_model(
|
|
thing, commit_to_conf=commit_to_conf
|
|
)
|
|
pipeline, _, _, _ = self._load_diffusers_model(self.config[model_name])
|
|
return model_name
|
|
else:
|
|
self.logger.warning(f"{thing}: Unknown thing. Please provide a URL, file path, directory or HuggingFace repo_id")
|
|
|
|
# Model_path is set in the event of a legacy checkpoint file.
|
|
# If not set, we're all done
|
|
if not model_path:
|
|
return
|
|
|
|
if model_path.stem in self.config: # already imported
|
|
self.logger.debug("Already imported. Skipping")
|
|
return model_path.stem
|
|
|
|
# another round of heuristics to guess the correct config file.
|
|
checkpoint = None
|
|
if model_path.suffix in [".ckpt", ".pt"]:
|
|
self.cache.scan_model(model_path, model_path)
|
|
checkpoint = torch.load(model_path)
|
|
else:
|
|
checkpoint = safetensors.torch.load_file(model_path)
|
|
|
|
# additional probing needed if no config file provided
|
|
if model_config_file is None:
|
|
# look for a like-named .yaml file in same directory
|
|
if model_path.with_suffix(".yaml").exists():
|
|
model_config_file = model_path.with_suffix(".yaml")
|
|
self.logger.debug(f"Using config file {model_config_file.name}")
|
|
|
|
else:
|
|
model_type = self.probe_model_type(checkpoint)
|
|
if model_type == SDLegacyType.V1:
|
|
self.logger.debug("SD-v1 model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v1-inference.yaml"
|
|
elif model_type == SDLegacyType.V1_INPAINT:
|
|
self.logger.debug("SD-v1 inpainting model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v1-inpainting-inference.yaml"
|
|
elif model_type == SDLegacyType.V2_v:
|
|
self.logger.debug("SD-v2-v model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v2-inference-v.yaml"
|
|
elif model_type == SDLegacyType.V2_e:
|
|
self.logger.debug("SD-v2-e model detected")
|
|
model_config_file = self.globals.legacy_conf_path / "v2-inference.yaml"
|
|
elif model_type == SDLegacyType.V2:
|
|
self.logger.warning(
|
|
f"{thing} is a V2 checkpoint file, but its parameterization cannot be determined."
|
|
)
|
|
else:
|
|
self.logger.warning(
|
|
f"{thing} is a legacy checkpoint file but not a known Stable Diffusion model."
|
|
)
|
|
|
|
if not model_config_file and config_file_callback:
|
|
model_config_file = config_file_callback(model_path)
|
|
|
|
# despite our best efforts, we could not find a model config file, so give up
|
|
if not model_config_file:
|
|
return
|
|
|
|
# look for a custom vae, a like-named file ending with .vae in the same directory
|
|
vae_path = None
|
|
for suffix in ["pt", "ckpt", "safetensors"]:
|
|
if (model_path.with_suffix(f".vae.{suffix}")).exists():
|
|
vae_path = model_path.with_suffix(f".vae.{suffix}")
|
|
self.logger.debug(f"Using VAE file {vae_path.name}")
|
|
vae = None if vae_path else dict(repo_id="stabilityai/sd-vae-ft-mse")
|
|
|
|
diffuser_path = self.globals.converted_ckpts_dir / model_path.stem
|
|
with SilenceWarnings():
|
|
model_name = self.convert_and_import(
|
|
model_path,
|
|
diffusers_path=diffuser_path,
|
|
vae=vae,
|
|
vae_path=str(vae_path),
|
|
model_name=model_name,
|
|
model_description=description,
|
|
original_config_file=model_config_file,
|
|
commit_to_conf=commit_to_conf,
|
|
scan_needed=False,
|
|
)
|
|
return model_name
|
|
|
|
def convert_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
|
"""
|
|
Convert the checkpoint model indicated in mconfig into a
|
|
diffusers, cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
weights = self.globals.root_dir / mconfig.weights
|
|
config_file = self.globals.root_dir / mconfig.config
|
|
diffusers_path = self.globals.converted_ckpts_dir / weights.stem
|
|
|
|
# return cached version if it exists
|
|
if diffusers_path.exists():
|
|
return diffusers_path
|
|
|
|
vae_ckpt_path, vae_model = self._get_vae_for_conversion(weights, mconfig)
|
|
|
|
# to avoid circular import errors
|
|
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
|
with SilenceWarnings():
|
|
convert_ckpt_to_diffusers(
|
|
weights,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=config_file,
|
|
vae=vae_model,
|
|
vae_path=str(self.globals.root_dir / vae_ckpt_path) if vae_ckpt_path else None,
|
|
scan_needed=True,
|
|
)
|
|
return diffusers_path
|
|
|
|
def convert_vae_ckpt_and_cache(self, mconfig: DictConfig) -> Path:
|
|
"""
|
|
Convert the VAE indicated in mconfig into a diffusers AutoencoderKL
|
|
object, cache it to disk, and return Path to converted
|
|
file. If already on disk then just returns Path.
|
|
"""
|
|
root = self.globals.root_dir
|
|
weights_file = root / mconfig.weights
|
|
config_file = root / mconfig.config
|
|
diffusers_path = self.globals.converted_ckpts_dir / weights_file.stem
|
|
image_size = mconfig.get('width') or mconfig.get('height') or 512
|
|
|
|
# return cached version if it exists
|
|
if diffusers_path.exists():
|
|
return diffusers_path
|
|
|
|
# this avoids circular import error
|
|
from .convert_ckpt_to_diffusers import convert_ldm_vae_to_diffusers
|
|
checkpoint = torch.load(weights_file, map_location="cpu")\
|
|
if weights_file.suffix in ['.ckpt','.pt'] \
|
|
else safetensors.torch.load_file(weights_file)
|
|
|
|
# sometimes weights are hidden under "state_dict", and sometimes not
|
|
if "state_dict" in checkpoint:
|
|
checkpoint = checkpoint["state_dict"]
|
|
|
|
config = OmegaConf.load(config_file)
|
|
|
|
vae_model = convert_ldm_vae_to_diffusers(
|
|
checkpoint = checkpoint,
|
|
vae_config = config,
|
|
image_size = image_size
|
|
)
|
|
vae_model.save_pretrained(
|
|
diffusers_path,
|
|
safe_serialization=is_safetensors_available()
|
|
)
|
|
return diffusers_path
|
|
|
|
def _get_vae_for_conversion(
|
|
self,
|
|
weights: Path,
|
|
mconfig: DictConfig
|
|
) -> Tuple[Path, AutoencoderKL]:
|
|
# VAE handling is convoluted
|
|
# 1. If there is a .vae.ckpt file sharing same stem as weights, then use
|
|
# it as the vae_path passed to convert
|
|
vae_ckpt_path = None
|
|
vae_diffusers_location = None
|
|
vae_model = None
|
|
for suffix in ["pt", "ckpt", "safetensors"]:
|
|
if (weights.with_suffix(f".vae.{suffix}")).exists():
|
|
vae_ckpt_path = weights.with_suffix(f".vae.{suffix}")
|
|
self.logger.debug(f"Using VAE file {vae_ckpt_path.name}")
|
|
if vae_ckpt_path:
|
|
return (vae_ckpt_path, None)
|
|
|
|
# 2. If mconfig has a vae weights path, then we use that as vae_path
|
|
vae_config = mconfig.get('vae')
|
|
if vae_config and isinstance(vae_config,str):
|
|
vae_ckpt_path = vae_config
|
|
return (vae_ckpt_path, None)
|
|
|
|
# 3. If mconfig has a vae dict, then we use it as the diffusers-style vae
|
|
if vae_config and isinstance(vae_config,DictConfig):
|
|
vae_diffusers_location = self.globals.root_dir / vae_config.get('path') \
|
|
if vae_config.get('path') \
|
|
else vae_config.get('repo_id')
|
|
|
|
# 4. Otherwise, we use stabilityai/sd-vae-ft-mse "because it works"
|
|
else:
|
|
vae_diffusers_location = "stabilityai/sd-vae-ft-mse"
|
|
|
|
if vae_diffusers_location:
|
|
vae_model = self.cache.get_model(vae_diffusers_location, SDModelType.Vae).model
|
|
return (None, vae_model)
|
|
|
|
return (None, None)
|
|
|
|
def convert_and_import(
|
|
self,
|
|
ckpt_path: Path,
|
|
diffusers_path: Path,
|
|
model_name=None,
|
|
model_description=None,
|
|
vae: dict = None,
|
|
vae_path: Path = None,
|
|
original_config_file: Path = None,
|
|
commit_to_conf: Path = None,
|
|
scan_needed: bool = True,
|
|
) -> str:
|
|
"""
|
|
Convert a legacy ckpt weights file to diffuser model and import
|
|
into models.yaml.
|
|
"""
|
|
ckpt_path = self._resolve_path(ckpt_path, "models/ldm/stable-diffusion-v1")
|
|
if original_config_file:
|
|
original_config_file = self._resolve_path(
|
|
original_config_file, "configs/stable-diffusion"
|
|
)
|
|
|
|
new_config = None
|
|
|
|
if diffusers_path.exists():
|
|
self.logger.error(
|
|
f"The path {str(diffusers_path)} already exists. Please move or remove it and try again."
|
|
)
|
|
return
|
|
|
|
model_name = model_name or diffusers_path.name
|
|
model_description = model_description or f"Converted version of {model_name}"
|
|
self.logger.debug(f"Converting {model_name} to diffusers (30-60s)")
|
|
|
|
# to avoid circular import errors
|
|
from .convert_ckpt_to_diffusers import convert_ckpt_to_diffusers
|
|
|
|
try:
|
|
# By passing the specified VAE to the conversion function, the autoencoder
|
|
# will be built into the model rather than tacked on afterward via the config file
|
|
vae_model = None
|
|
if vae:
|
|
vae_location = self.globals.root_dir / vae.get('path') \
|
|
if vae.get('path') \
|
|
else vae.get('repo_id')
|
|
vae_model = self.cache.get_model(vae_location, SDModelType.Vae).model
|
|
vae_path = None
|
|
convert_ckpt_to_diffusers(
|
|
ckpt_path,
|
|
diffusers_path,
|
|
extract_ema=True,
|
|
original_config_file=original_config_file,
|
|
vae=vae_model,
|
|
vae_path=vae_path,
|
|
scan_needed=scan_needed,
|
|
)
|
|
self.logger.debug(
|
|
f"Success. Converted model is now located at {str(diffusers_path)}"
|
|
)
|
|
self.logger.debug(f"Writing new config file entry for {model_name}")
|
|
new_config = dict(
|
|
path=str(diffusers_path),
|
|
description=model_description,
|
|
format="diffusers",
|
|
)
|
|
if self.model_exists(model_name, SDModelType.Diffusers):
|
|
self.del_model(model_name, SDModelType.Diffusers)
|
|
self.add_model(
|
|
model_name,
|
|
SDModelType.Diffusers,
|
|
new_config,
|
|
True
|
|
)
|
|
if commit_to_conf:
|
|
self.commit(commit_to_conf)
|
|
self.logger.debug(f"Model {model_name} installed")
|
|
except Exception as e:
|
|
self.logger.warning(f"Conversion failed: {str(e)}")
|
|
self.logger.warning(traceback.format_exc())
|
|
self.logger.warning(
|
|
"If you are trying to convert an inpainting or 2.X model, please indicate the correct config file (e.g. v1-inpainting-inference.yaml)"
|
|
)
|
|
|
|
return model_name
|
|
|
|
def search_models(self, search_folder):
|
|
self.logger.info(f"Finding Models In: {search_folder}")
|
|
models_folder_ckpt = Path(search_folder).glob("**/*.ckpt")
|
|
models_folder_safetensors = Path(search_folder).glob("**/*.safetensors")
|
|
|
|
ckpt_files = [x for x in models_folder_ckpt if x.is_file()]
|
|
safetensor_files = [x for x in models_folder_safetensors if x.is_file()]
|
|
|
|
files = ckpt_files + safetensor_files
|
|
|
|
found_models = []
|
|
for file in files:
|
|
location = str(file.resolve()).replace("\\", "/")
|
|
if (
|
|
"model.safetensors" not in location
|
|
and "diffusion_pytorch_model.safetensors" not in location
|
|
):
|
|
found_models.append({"name": file.stem, "location": location})
|
|
|
|
return search_folder, found_models
|
|
|
|
def commit(self, conf_file: Path=None) -> None:
|
|
"""
|
|
Write current configuration out to the indicated file.
|
|
"""
|
|
yaml_str = OmegaConf.to_yaml(self.config)
|
|
config_file_path = conf_file or self.config_path
|
|
assert config_file_path is not None,'no config file path to write to'
|
|
config_file_path = self.globals.root_dir / config_file_path
|
|
tmpfile = os.path.join(os.path.dirname(config_file_path), "new_config.tmp")
|
|
with open(tmpfile, "w", encoding="utf-8") as outfile:
|
|
outfile.write(self.preamble())
|
|
outfile.write(yaml_str)
|
|
os.replace(tmpfile, config_file_path)
|
|
|
|
def preamble(self) -> str:
|
|
"""
|
|
Returns the preamble for the config file.
|
|
"""
|
|
return textwrap.dedent(
|
|
"""\
|
|
# This file describes the alternative machine learning models
|
|
# available to InvokeAI script.
|
|
#
|
|
# To add a new model, follow the examples below. Each
|
|
# model requires a model config file, a weights file,
|
|
# and the width and height of the images it
|
|
# was trained on.
|
|
"""
|
|
)
|
|
|
|
@classmethod
|
|
def _delete_model_from_cache(cls,repo_id):
|
|
cache_info = scan_cache_dir(InvokeAIAppConfig.get_config().cache_dir)
|
|
|
|
# I'm sure there is a way to do this with comprehensions
|
|
# but the code quickly became incomprehensible!
|
|
hashes_to_delete = set()
|
|
for repo in cache_info.repos:
|
|
if repo.repo_id == repo_id:
|
|
for revision in repo.revisions:
|
|
hashes_to_delete.add(revision.commit_hash)
|
|
strategy = cache_info.delete_revisions(*hashes_to_delete)
|
|
cls.logger.warning(
|
|
f"Deletion of this model is expected to free {strategy.expected_freed_size_str}"
|
|
)
|
|
strategy.execute()
|
|
|
|
@staticmethod
|
|
def _abs_path(path: str | Path) -> Path:
|
|
globals = InvokeAIAppConfig.get_config()
|
|
if path is None or Path(path).is_absolute():
|
|
return path
|
|
return Path(globals.root_dir, path).resolve()
|
|
|
|
# This is not the same as global_resolve_path(), which prepends
|
|
# Globals.root.
|
|
def _resolve_path(
|
|
self, source: Union[str, Path], dest_directory: str
|
|
) -> Optional[Path]:
|
|
resolved_path = None
|
|
if str(source).startswith(("http:", "https:", "ftp:")):
|
|
dest_directory = self.globals.root_dir / dest_directory
|
|
dest_directory.mkdir(parents=True, exist_ok=True)
|
|
resolved_path = download_with_resume(str(source), dest_directory)
|
|
else:
|
|
resolved_path = self.globals.root_dir / source
|
|
return resolved_path
|
|
|
|
def _update_config_file_version(self):
|
|
"""
|
|
This gets called at object init time and will update
|
|
from older versions of the config file to new ones
|
|
as necessary.
|
|
"""
|
|
current_version = self.config.get("_version","1.0.0")
|
|
if version.parse(current_version) < version.parse(CONFIG_FILE_VERSION):
|
|
self.logger.warning(f'models.yaml version {current_version} detected. Updating to {CONFIG_FILE_VERSION}')
|
|
self.logger.warning('The original file will be renamed models.yaml.orig')
|
|
if self.config_path:
|
|
old_file = Path(self.config_path)
|
|
new_name = old_file.parent / 'models.yaml.orig'
|
|
old_file.replace(new_name)
|
|
|
|
new_config = OmegaConf.create()
|
|
new_config["_version"] = CONFIG_FILE_VERSION
|
|
|
|
for model_key in self.config:
|
|
|
|
old_stanza = self.config[model_key]
|
|
if not isinstance(old_stanza,DictConfig):
|
|
continue
|
|
|
|
# ignore old and ugly way of associating a legacy
|
|
# vae with a legacy checkpont model
|
|
if old_stanza.get("config") and '/VAE/' in old_stanza.get("config"):
|
|
continue
|
|
|
|
# bare keys are updated to be prefixed with 'diffusers/'
|
|
if '/' not in model_key:
|
|
new_key = f'diffusers/{model_key}'
|
|
else:
|
|
new_key = model_key
|
|
|
|
if old_stanza.get('format')=='diffusers':
|
|
model_format = 'folder'
|
|
elif old_stanza.get('weights') and Path(old_stanza.get('weights')).suffix == '.ckpt':
|
|
model_format = 'ckpt'
|
|
elif old_stanza.get('weights') and Path(old_stanza.get('weights')).suffix == '.safetensors':
|
|
model_format = 'safetensors'
|
|
else:
|
|
model_format = old_stanza.get('format')
|
|
|
|
# copy fields over manually rather than doing a copy() or deepcopy()
|
|
# in order to avoid bringing in unwanted fields.
|
|
new_config[new_key] = dict(
|
|
description = old_stanza.get('description'),
|
|
format = model_format,
|
|
)
|
|
for field in ["repo_id", "path", "weights", "config", "vae"]:
|
|
if field_value := old_stanza.get(field):
|
|
new_config[new_key].update({field: field_value})
|
|
|
|
self.config = new_config
|
|
if self.config_path:
|
|
self.commit()
|
|
|
|
def list_lora_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed lora models; key is either the shortname
|
|
defined in INITIAL_MODELS, or the basename of the file in the LoRA
|
|
directory. Value is True if installed'''
|
|
|
|
models = OmegaConf.load(Dataset_path).get('lora') or {}
|
|
installed_models = {x: False for x in models.keys()}
|
|
|
|
dir = self.globals.lora_path
|
|
installed_models = dict()
|
|
for root, dirs, files in os.walk(dir):
|
|
for name in files:
|
|
if Path(name).suffix not in ['.safetensors','.ckpt','.pt','.bin']:
|
|
continue
|
|
if name == 'pytorch_lora_weights.bin':
|
|
name = Path(root,name).parent.stem #Path(root,name).stem
|
|
else:
|
|
name = Path(name).stem
|
|
installed_models.update({name: True})
|
|
|
|
return installed_models
|
|
|
|
def install_lora_models(self, model_names: list[str], access_token:str=None):
|
|
'''Download list of LoRA/LyCORIS models'''
|
|
|
|
short_names = OmegaConf.load(Dataset_path).get('lora') or {}
|
|
for name in model_names:
|
|
name = short_names.get(name) or name
|
|
|
|
# HuggingFace style LoRA
|
|
if re.match(r"^[\w.+-]+/([\w.+-]+)$", name):
|
|
self.logger.info(f'Downloading LoRA/LyCORIS model {name}')
|
|
_,dest_dir = name.split("/")
|
|
|
|
hf_download_with_resume(
|
|
repo_id = name,
|
|
model_dir = self.globals.lora_path / dest_dir,
|
|
model_name = 'pytorch_lora_weights.bin',
|
|
access_token = access_token,
|
|
)
|
|
|
|
elif name.startswith(("http:", "https:", "ftp:")):
|
|
download_with_resume(name, self.globals.lora_path)
|
|
|
|
else:
|
|
self.logger.error(f"Unknown repo_id or URL: {name}")
|
|
|
|
def delete_lora_models(self, model_names: List[str]):
|
|
'''Remove the list of lora models'''
|
|
for name in model_names:
|
|
file_or_directory = self.globals.lora_path / name
|
|
if file_or_directory.is_dir():
|
|
self.logger.info(f'Purging LoRA/LyCORIS {name}')
|
|
shutil.rmtree(str(file_or_directory))
|
|
else:
|
|
for path in self.globals.lora_path.glob(f'{name}.*'):
|
|
self.logger.info(f'Purging LoRA/LyCORIS {name}')
|
|
path.unlink()
|
|
|
|
def list_ti_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed textual models; key is either the shortname
|
|
defined in INITIAL_MODELS, or the basename of the file in the LoRA
|
|
directory. Value is True if installed'''
|
|
|
|
models = OmegaConf.load(Dataset_path).get('textual_inversion') or {}
|
|
installed_models = {x: False for x in models.keys()}
|
|
|
|
dir = self.globals.embedding_path
|
|
for root, dirs, files in os.walk(dir):
|
|
for name in files:
|
|
if not Path(name).suffix in ['.bin','.pt','.ckpt','.safetensors']:
|
|
continue
|
|
if name == 'learned_embeds.bin':
|
|
name = Path(root,name).parent.stem #Path(root,name).stem
|
|
else:
|
|
name = Path(name).stem
|
|
installed_models.update({name: True})
|
|
return installed_models
|
|
|
|
def install_ti_models(self, model_names: list[str], access_token: str=None):
|
|
'''Download list of textual inversion embeddings'''
|
|
|
|
short_names = OmegaConf.load(Dataset_path).get('textual_inversion') or {}
|
|
for name in model_names:
|
|
name = short_names.get(name) or name
|
|
|
|
if re.match(r"^[\w.+-]+/([\w.+-]+)$", name):
|
|
self.logger.info(f'Downloading Textual Inversion embedding {name}')
|
|
_,dest_dir = name.split("/")
|
|
hf_download_with_resume(
|
|
repo_id = name,
|
|
model_dir = self.globals.embedding_path / dest_dir,
|
|
model_name = 'learned_embeds.bin',
|
|
access_token = access_token
|
|
)
|
|
elif name.startswith(('http:','https:','ftp:')):
|
|
download_with_resume(name, self.globals.embedding_path)
|
|
else:
|
|
self.logger.error(f'{name} does not look like either a HuggingFace repo_id or a downloadable URL')
|
|
|
|
def delete_ti_models(self, model_names: list[str]):
|
|
'''Remove TI embeddings from disk'''
|
|
for name in model_names:
|
|
file_or_directory = self.globals.embedding_path / name
|
|
if file_or_directory.is_dir():
|
|
self.logger.info(f'Purging textual inversion embedding {name}')
|
|
shutil.rmtree(str(file_or_directory))
|
|
else:
|
|
for path in self.globals.embedding_path.glob(f'{name}.*'):
|
|
self.logger.info(f'Purging textual inversion embedding {name}')
|
|
path.unlink()
|
|
|
|
def list_controlnet_models(self)->Dict[str,bool]:
|
|
'''Return a dict of installed controlnet models; key is repo_id or short name
|
|
of model (defined in INITIAL_MODELS), and value is True if installed'''
|
|
|
|
cn_models = OmegaConf.load(Dataset_path).get('controlnet') or {}
|
|
installed_models = {x: False for x in cn_models.keys()}
|
|
|
|
cn_dir = self.globals.controlnet_path
|
|
for root, dirs, files in os.walk(cn_dir):
|
|
for name in dirs:
|
|
if Path(root, name, '.download_complete').exists():
|
|
installed_models.update({name.replace('--','/'): True})
|
|
return installed_models
|
|
|
|
def install_controlnet_models(self, model_names: list[str], access_token: str=None):
|
|
'''Download list of controlnet models; provide either repo_id or short name listed in INITIAL_MODELS.yaml'''
|
|
short_names = OmegaConf.load(Dataset_path).get('controlnet') or {}
|
|
dest_dir = self.globals.controlnet_path
|
|
dest_dir.mkdir(parents=True,exist_ok=True)
|
|
|
|
# The model file may be fp32 or fp16, and may be either a
|
|
# .bin file or a .safetensors. We try each until we get one,
|
|
# preferring 'fp16' if using half precision, and preferring
|
|
# safetensors over over bin.
|
|
precisions = ['.fp16',''] if self.precision=='float16' else ['']
|
|
formats = ['.safetensors','.bin']
|
|
possible_filenames = list()
|
|
for p in precisions:
|
|
for f in formats:
|
|
possible_filenames.append(Path(f'diffusion_pytorch_model{p}{f}'))
|
|
|
|
for directory_name in model_names:
|
|
repo_id = short_names.get(directory_name) or directory_name
|
|
safe_name = directory_name.replace('/','--')
|
|
self.logger.info(f'Downloading ControlNet model {directory_name} ({repo_id})')
|
|
hf_download_with_resume(
|
|
repo_id = repo_id,
|
|
model_dir = dest_dir / safe_name,
|
|
model_name = 'config.json',
|
|
access_token = access_token
|
|
)
|
|
|
|
path = None
|
|
for filename in possible_filenames:
|
|
suffix = filename.suffix
|
|
dest_filename = Path(f'diffusion_pytorch_model{suffix}')
|
|
self.logger.info(f'Checking availability of {directory_name}/{filename}...')
|
|
path = hf_download_with_resume(
|
|
repo_id = repo_id,
|
|
model_dir = dest_dir / safe_name,
|
|
model_name = str(filename),
|
|
access_token = access_token,
|
|
model_dest = Path(dest_dir, safe_name, dest_filename),
|
|
)
|
|
if path:
|
|
(path.parent / '.download_complete').touch()
|
|
break
|
|
|
|
def delete_controlnet_models(self, model_names: List[str]):
|
|
'''Remove the list of controlnet models'''
|
|
for name in model_names:
|
|
safe_name = name.replace('/','--')
|
|
directory = self.globals.controlnet_path / safe_name
|
|
if directory.exists():
|
|
self.logger.info(f'Purging controlnet model {name}')
|
|
shutil.rmtree(str(directory))
|
|
|