InvokeAI/invokeai/app/services/batch_manager.py
psychedelicious c5b963f1a6 fix(backend): typo
`relavent` -> `relevant`
2023-08-17 12:47:58 +10:00

140 lines
5.2 KiB
Python

from typing import Optional, Union
import networkx as nx
import copy
from abc import ABC, abstractmethod
from itertools import product
from pydantic import BaseModel, Field
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.graph import Graph, GraphExecutionState
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.batch_manager_storage import (
BatchProcessStorageBase,
BatchSessionNotFoundException,
Batch,
BatchProcess,
BatchSession,
BatchSessionChanges,
)
class BatchProcessResponse(BaseModel):
batch_id: str = Field(description="ID for the batch")
session_ids: list[str] = Field(description="List of session IDs created for this batch")
class BatchManagerBase(ABC):
@abstractmethod
def start(self, invoker: Invoker) -> None:
pass
@abstractmethod
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
pass
@abstractmethod
def run_batch_process(self, batch_id: str) -> None:
pass
@abstractmethod
def cancel_batch_process(self, batch_process_id: str) -> None:
pass
class BatchManager(BatchManagerBase):
"""Responsible for managing currently running and scheduled batch jobs"""
__invoker: Invoker
__batch_process_storage: BatchProcessStorageBase
def __init__(self, batch_process_storage: BatchProcessStorageBase) -> None:
super().__init__()
self.__batch_process_storage = batch_process_storage
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
local_handler.register(event_name=EventServiceBase.session_event, _func=self.on_event)
async def on_event(self, event: Event):
event_name = event[1]["event"]
match event_name:
case "graph_execution_state_complete":
await self._process(event, False)
case "invocation_error":
await self._process(event, True)
return event
async def _process(self, event: Event, err: bool) -> None:
data = event[1]["data"]
batch_session = self.__batch_process_storage.get_session(data["graph_execution_state_id"])
if not batch_session:
return None
updateSession = BatchSessionChanges(state="error" if err else "completed")
batch_session = self.__batch_process_storage.update_session_state(
batch_session.batch_id,
batch_session.session_id,
updateSession,
)
batch_process = self.__batch_process_storage.get(batch_session.batch_id)
if not batch_process.canceled:
self.run_batch_process(batch_process.batch_id)
def _create_batch_session(self, batch_process: BatchProcess, batch_indices: tuple[int]) -> GraphExecutionState:
graph = batch_process.graph.copy(deep=True)
batch = batch_process.batch
g = graph.nx_graph_flat()
sorted_nodes = nx.topological_sort(g)
for npath in sorted_nodes:
node = graph.get_node(npath)
for index, bdl in enumerate(batch.data):
relevant_bd = [bd for bd in bdl if bd.node_id in node.id]
if not relevant_bd:
continue
for bd in relevant_bd:
batch_index = batch_indices[index]
datum = bd.items[batch_index]
key = bd.field_name
node.__dict__[key] = datum
graph.update_node(npath, node)
return GraphExecutionState(graph=graph)
def run_batch_process(self, batch_id: str) -> None:
self.__batch_process_storage.start(batch_id)
created_session = self.__batch_process_storage.get_created_session(batch_id)
ges = self.__invoker.services.graph_execution_manager.get(created_session.session_id)
self.__invoker.invoke(ges, invoke_all=True)
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
batch_process = BatchProcess(
batch=batch,
graph=graph,
)
batch_process = self.__batch_process_storage.save(batch_process)
sessions = self._create_sessions(batch_process)
return BatchProcessResponse(
batch_id=batch_process.batch_id,
session_ids=[session.session_id for session in sessions],
)
def _create_sessions(self, batch_process: BatchProcess) -> list[BatchSession]:
batch_indices = list()
sessions = list()
for batchdata in batch_process.batch.data:
batch_indices.append(list(range(len(batchdata[0].items))))
all_batch_indices = product(*batch_indices)
for bi in all_batch_indices:
ges = self._create_batch_session(batch_process, bi)
self.__invoker.services.graph_execution_manager.set(ges)
batch_session = BatchSession(batch_id=batch_process.batch_id, session_id=ges.id, state="created")
sessions.append(self.__batch_process_storage.create_session(batch_session))
return sessions
def cancel_batch_process(self, batch_process_id: str) -> None:
self.__batch_process_storage.cancel(batch_process_id)