mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
64 lines
1.7 KiB
Python
64 lines
1.7 KiB
Python
import torch
|
|
from typing import Optional
|
|
from .base import (
|
|
ModelBase,
|
|
ModelConfigBase,
|
|
BaseModelType,
|
|
ModelType,
|
|
SubModelType,
|
|
classproperty,
|
|
)
|
|
# TODO: naming
|
|
from ..lora import TextualInversionModel as TextualInversionModelRaw
|
|
|
|
class TextualInversionModel(ModelBase):
|
|
#model_size: int
|
|
|
|
class TextualInversionModelConfig(ModelConfigBase):
|
|
format: None
|
|
|
|
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
|
|
assert model_type == ModelType.TextualInversion
|
|
super().__init__(model_path, base_model, model_type)
|
|
|
|
self.model_size = os.path.getsize(self.model_path)
|
|
|
|
def get_size(self, child_type: Optional[SubModelType] = None):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in textual inversion")
|
|
return self.model_size
|
|
|
|
def get_model(
|
|
self,
|
|
torch_dtype: Optional[torch.dtype],
|
|
child_type: Optional[SubModelType] = None,
|
|
):
|
|
if child_type is not None:
|
|
raise Exception("There is no child models in textual inversion")
|
|
|
|
model = TextualInversionModelRaw.from_checkpoint(
|
|
file_path=self.model_path,
|
|
dtype=torch_dtype,
|
|
)
|
|
|
|
self.model_size = model.embedding.nelement() * model.embedding.element_size()
|
|
return model
|
|
|
|
@classproperty
|
|
def save_to_config(cls) -> bool:
|
|
return False
|
|
|
|
@classmethod
|
|
def detect_format(cls, path: str):
|
|
return None
|
|
|
|
@classmethod
|
|
def convert_if_required(
|
|
cls,
|
|
model_path: str,
|
|
output_path: str,
|
|
config: ModelConfigBase,
|
|
base_model: BaseModelType,
|
|
) -> str:
|
|
return model_path
|