InvokeAI/invokeai/backend/model_management/models/textual_inversion.py
2023-06-17 21:28:43 +12:00

64 lines
1.7 KiB
Python

import torch
from typing import Optional
from .base import (
ModelBase,
ModelConfigBase,
BaseModelType,
ModelType,
SubModelType,
classproperty,
)
# TODO: naming
from ..lora import TextualInversionModel as TextualInversionModelRaw
class TextualInversionModel(ModelBase):
#model_size: int
class TextualInversionModelConfig(ModelConfigBase):
format: None
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.TextualInversion
super().__init__(model_path, base_model, model_type)
self.model_size = os.path.getsize(self.model_path)
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in textual inversion")
model = TextualInversionModelRaw.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
)
self.model_size = model.embedding.nelement() * model.embedding.element_size()
return model
@classproperty
def save_to_config(cls) -> bool:
return False
@classmethod
def detect_format(cls, path: str):
return None
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
return model_path