InvokeAI/ldm/invoke/training/textual_inversion_training.py
Lincoln Stein 023db8ac41 use diffusers 0.14 cache layout
This PR ports the `main` PR #2871 to the v2.3 branch. This adjusts
the global diffusers model cache to work with the 0.14 diffusers
layout of placing models in HF_HOME/hub rather than HF_HOME/diffusers.
2023-03-09 22:35:43 -05:00

1010 lines
35 KiB
Python

# This code was copied from
# https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion/textual_inversion.py
# on January 2, 2023
# and modified slightly by Lincoln Stein (@lstein) to work with InvokeAI
"""
This is the backend to "textual_inversion.py"
"""
import argparse
import logging
import math
import os
import random
from pathlib import Path
from typing import Optional
import datasets
import diffusers
import numpy as np
import PIL
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from omegaconf import OmegaConf
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
from packaging import version
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
# invokeai stuff
from ldm.invoke.args import ArgFormatter, PagingArgumentParser
from ldm.invoke.globals import Globals, global_cache_dir
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
PIL_INTERPOLATION = {
"linear": PIL.Image.Resampling.BILINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
"nearest": PIL.Image.Resampling.NEAREST,
}
else:
PIL_INTERPOLATION = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.BILINEAR,
"bicubic": PIL.Image.BICUBIC,
"lanczos": PIL.Image.LANCZOS,
"nearest": PIL.Image.NEAREST,
}
# ------------------------------------------------------------------------------
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.10.0.dev0")
logger = get_logger(__name__)
def save_progress(
text_encoder, placeholder_token_id, accelerator, placeholder_token, save_path
):
logger.info("Saving embeddings")
learned_embeds = (
accelerator.unwrap_model(text_encoder)
.get_input_embeddings()
.weight[placeholder_token_id]
)
learned_embeds_dict = {placeholder_token: learned_embeds.detach().cpu()}
torch.save(learned_embeds_dict, save_path)
def parse_args():
parser = PagingArgumentParser(
description="Textual inversion training", formatter_class=ArgFormatter
)
general_group = parser.add_argument_group("General")
model_group = parser.add_argument_group("Models and Paths")
image_group = parser.add_argument_group("Training Image Location and Options")
trigger_group = parser.add_argument_group("Trigger Token")
training_group = parser.add_argument_group("Training Parameters")
checkpointing_group = parser.add_argument_group("Checkpointing and Resume")
integration_group = parser.add_argument_group("Integration")
general_group.add_argument(
"--front_end",
"--gui",
dest="front_end",
action="store_true",
default=False,
help="Activate the text-based graphical front end for collecting parameters. Aside from --root_dir, other parameters will be ignored.",
)
general_group.add_argument(
"--root_dir",
"--root",
type=Path,
default=Globals.root,
help="Path to the invokeai runtime directory",
)
general_group.add_argument(
"--logging_dir",
type=Path,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
general_group.add_argument(
"--output_dir",
type=Path,
default=f"{Globals.root}/text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
model_group.add_argument(
"--model",
type=str,
default="stable-diffusion-1.5",
help="Name of the diffusers model to train against, as defined in configs/models.yaml.",
)
model_group.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
model_group.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
image_group.add_argument(
"--train_data_dir",
type=Path,
default=None,
help="A folder containing the training data.",
)
image_group.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
image_group.add_argument(
"--center_crop",
action="store_true",
help="Whether to center crop images before resizing to resolution",
)
trigger_group.add_argument(
"--placeholder_token",
"--trigger_term",
dest="placeholder_token",
type=str,
default=None,
help='A token to use as a placeholder for the concept. This token will trigger the concept when included in the prompt as "<trigger>".',
)
trigger_group.add_argument(
"--learnable_property",
type=str,
choices=["object", "style"],
default="object",
help="Choose between 'object' and 'style'",
)
trigger_group.add_argument(
"--initializer_token",
type=str,
default="*",
help="A symbol to use as the initializer word.",
)
checkpointing_group.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
checkpointing_group.add_argument(
"--resume_from_checkpoint",
type=Path,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
checkpointing_group.add_argument(
"--save_steps",
type=int,
default=500,
help="Save learned_embeds.bin every X updates steps.",
)
training_group.add_argument(
"--repeats",
type=int,
default=100,
help="How many times to repeat the training data.",
)
training_group.add_argument(
"--seed", type=int, default=None, help="A seed for reproducible training."
)
training_group.add_argument(
"--train_batch_size",
type=int,
default=16,
help="Batch size (per device) for the training dataloader.",
)
training_group.add_argument("--num_train_epochs", type=int, default=100)
training_group.add_argument(
"--max_train_steps",
type=int,
default=5000,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
training_group.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
training_group.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
training_group.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
training_group.add_argument(
"--scale_lr",
action="store_true",
default=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
training_group.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
training_group.add_argument(
"--lr_warmup_steps",
type=int,
default=500,
help="Number of steps for the warmup in the lr scheduler.",
)
training_group.add_argument(
"--adam_beta1",
type=float,
default=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
training_group.add_argument(
"--adam_beta2",
type=float,
default=0.999,
help="The beta2 parameter for the Adam optimizer.",
)
training_group.add_argument(
"--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use."
)
training_group.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer",
)
training_group.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU."
),
)
training_group.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
training_group.add_argument(
"--local_rank",
type=int,
default=-1,
help="For distributed training: local_rank",
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention",
action="store_true",
help="Whether or not to use xformers.",
)
integration_group.add_argument(
"--only_save_embeds",
action="store_true",
default=False,
help="Save only the embeddings for the new concept.",
)
integration_group.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
integration_group.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
integration_group.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
integration_group.add_argument(
"--hub_token",
type=str,
default=None,
help="The token to use to push to the Model Hub.",
)
args = parser.parse_args()
return args
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
flip_p=0.5,
set="train",
placeholder_token="*",
center_crop=False,
):
self.data_root = Path(data_root)
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.flip_p = flip_p
self.image_paths = [
self.data_root / file_path
for file_path in self.data_root.iterdir()
if file_path.is_file() and file_path.name.endswith(('.png','.PNG','.jpg','.JPG','.jpeg','.JPEG','.gif','.GIF'))
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL_INTERPOLATION["linear"],
"bilinear": PIL_INTERPOLATION["bilinear"],
"bicubic": PIL_INTERPOLATION["bicubic"],
"lanczos": PIL_INTERPOLATION["lanczos"],
}[interpolation]
self.templates = (
imagenet_style_templates_small
if learnable_property == "style"
else imagenet_templates_small
)
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
def __len__(self):
return self._length
def __getitem__(self, i):
example = {}
image = Image.open(self.image_paths[i % self.num_images])
if not image.mode == "RGB":
image = image.convert("RGB")
placeholder_string = self.placeholder_token
text = random.choice(self.templates).format(placeholder_string)
example["input_ids"] = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
h, w, = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2
]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = self.flip_transform(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
return example
def get_full_repo_name(
model_id: str, organization: Optional[str] = None, token: Optional[str] = None
):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def do_textual_inversion_training(
model: str,
train_data_dir: Path,
output_dir: Path,
placeholder_token: str,
initializer_token: str,
save_steps: int = 500,
only_save_embeds: bool = False,
revision: str = None,
tokenizer_name: str = None,
learnable_property: str = "object",
repeats: int = 100,
seed: int = None,
resolution: int = 512,
center_crop: bool = False,
train_batch_size: int = 16,
num_train_epochs: int = 100,
max_train_steps: int = 5000,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = False,
learning_rate: float = 1e-4,
scale_lr: bool = True,
lr_scheduler: str = "constant",
lr_warmup_steps: int = 500,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-02,
adam_epsilon: float = 1e-08,
push_to_hub: bool = False,
hub_token: str = None,
logging_dir: Path = Path("logs"),
mixed_precision: str = "fp16",
allow_tf32: bool = False,
report_to: str = "tensorboard",
local_rank: int = -1,
checkpointing_steps: int = 500,
resume_from_checkpoint: Path = None,
enable_xformers_memory_efficient_attention: bool = False,
root_dir: Path = None,
hub_model_id: str = None,
**kwargs,
):
assert model, "Please specify a base model with --model"
assert (
train_data_dir
), "Please specify a directory containing the training images using --train_data_dir"
assert placeholder_token, "Please specify a trigger term using --placeholder_token"
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != local_rank:
local_rank = env_local_rank
# setting up things the way invokeai expects them
if not os.path.isabs(output_dir):
output_dir = os.path.join(Globals.root, output_dir)
logging_dir = output_dir / logging_dir
accelerator = Accelerator(
gradient_accumulation_steps=gradient_accumulation_steps,
mixed_precision=mixed_precision,
log_with=report_to,
logging_dir=logging_dir,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if seed is not None:
set_seed(seed)
# Handle the repository creation
if accelerator.is_main_process:
if push_to_hub:
if hub_model_id is None:
repo_name = get_full_repo_name(Path(output_dir).name, token=hub_token)
else:
repo_name = hub_model_id
repo = Repository(output_dir, clone_from=repo_name)
with open(os.path.join(output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif output_dir is not None:
os.makedirs(output_dir, exist_ok=True)
models_conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
model_conf = models_conf.get(model, None)
assert model_conf is not None, f"Unknown model: {model}"
assert (
model_conf.get("format", "diffusers") == "diffusers"
), "This script only works with models of type 'diffusers'"
pretrained_model_name_or_path = model_conf.get("repo_id", None) or Path(
model_conf.get("path")
)
assert (
pretrained_model_name_or_path
), f"models.yaml error: neither 'repo_id' nor 'path' is defined for {model}"
pipeline_args = dict(cache_dir=global_cache_dir("hub"))
# Load tokenizer
if tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(tokenizer_name, **pipeline_args)
else:
tokenizer = CLIPTokenizer.from_pretrained(
pretrained_model_name_or_path, subfolder="tokenizer", **pipeline_args
)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(
pretrained_model_name_or_path, subfolder="scheduler", **pipeline_args
)
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="text_encoder",
revision=revision,
**pipeline_args,
)
vae = AutoencoderKL.from_pretrained(
pretrained_model_name_or_path,
subfolder="vae",
revision=revision,
**pipeline_args,
)
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path,
subfolder="unet",
revision=revision,
**pipeline_args,
)
# Add the placeholder token in tokenizer
num_added_tokens = tokenizer.add_tokens(placeholder_token)
if num_added_tokens == 0:
raise ValueError(
f"The tokenizer already contains the token {placeholder_token}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = tokenizer.encode(initializer_token, add_special_tokens=False)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
raise ValueError(
f"The initializer token must be a single token. Provided initializer={initializer_token}. Token ids={token_ids}"
)
initializer_token_id = token_ids[0]
placeholder_token_id = tokenizer.convert_tokens_to_ids(placeholder_token)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
text_encoder.resize_token_embeddings(len(tokenizer))
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = text_encoder.get_input_embeddings().weight.data
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# Freeze vae and unet
vae.requires_grad_(False)
unet.requires_grad_(False)
# Freeze all parameters except for the token embeddings in text encoder
text_encoder.text_model.encoder.requires_grad_(False)
text_encoder.text_model.final_layer_norm.requires_grad_(False)
text_encoder.text_model.embeddings.position_embedding.requires_grad_(False)
if gradient_checkpointing:
# Keep unet in train mode if we are using gradient checkpointing to save memory.
# The dropout cannot be != 0 so it doesn't matter if we are in eval or train mode.
unet.train()
text_encoder.gradient_checkpointing_enable()
unet.enable_gradient_checkpointing()
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError(
"xformers is not available. Make sure it is installed correctly"
)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if scale_lr:
learning_rate = (
learning_rate
* gradient_accumulation_steps
* train_batch_size
* accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
text_encoder.get_input_embeddings().parameters(), # only optimize the embeddings
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
# Dataset and DataLoaders creation:
train_dataset = TextualInversionDataset(
data_root=train_data_dir,
tokenizer=tokenizer,
size=resolution,
placeholder_token=placeholder_token,
repeats=repeats,
learnable_property=learnable_property,
center_crop=center_crop,
set="train",
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
if max_train_steps is None:
max_train_steps = num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
text_encoder, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the unet and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae and unet to device and cast to weight_dtype
unet.to(accelerator.device, dtype=weight_dtype)
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / gradient_accumulation_steps
)
if overrode_max_train_steps:
max_train_steps = num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
params = locals()
for k in params: # init_trackers() doesn't like objects
params[k] = str(params[k]) if isinstance(params[k], object) else params[k]
accelerator.init_trackers("textual_inversion", config=params)
# Train!
total_batch_size = (
train_batch_size * accelerator.num_processes * gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
resume_step = None
# Potentially load in the weights and states from a previous save
if resume_from_checkpoint:
if resume_from_checkpoint != "latest":
path = os.path.basename(resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{resume_from_checkpoint}' does not exist. Starting a new training run."
)
resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (
num_update_steps_per_epoch * gradient_accumulation_steps
)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(global_step, max_train_steps),
disable=not accelerator.is_local_main_process,
)
progress_bar.set_description("Steps")
# keep original embeddings as reference
orig_embeds_params = (
accelerator.unwrap_model(text_encoder)
.get_input_embeddings()
.weight.data.clone()
)
for epoch in range(first_epoch, num_train_epochs):
text_encoder.train()
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if (
resume_step
and resume_from_checkpoint
and epoch == first_epoch
and step < resume_step
):
if step % gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(text_encoder):
# Convert images to latent space
latents = (
vae.encode(batch["pixel_values"].to(dtype=weight_dtype))
.latent_dist.sample()
.detach()
)
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0].to(
dtype=weight_dtype
)
# Predict the noise residual
model_pred = unet(
noisy_latents, timesteps, encoder_hidden_states
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Let's make sure we don't update any embedding weights besides the newly added token
index_no_updates = torch.arange(len(tokenizer)) != placeholder_token_id
with torch.no_grad():
accelerator.unwrap_model(
text_encoder
).get_input_embeddings().weight[
index_no_updates
] = orig_embeds_params[
index_no_updates
]
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % save_steps == 0:
save_path = os.path.join(
output_dir, f"learned_embeds-steps-{global_step}.bin"
)
save_progress(
text_encoder,
placeholder_token_id,
accelerator,
placeholder_token,
save_path,
)
if global_step % checkpointing_steps == 0:
if accelerator.is_main_process:
save_path = os.path.join(
output_dir, f"checkpoint-{global_step}"
)
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
if push_to_hub and only_save_embeds:
logger.warn(
"Enabling full model saving because --push_to_hub=True was specified."
)
save_full_model = True
else:
save_full_model = not only_save_embeds
if save_full_model:
pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_name_or_path,
text_encoder=accelerator.unwrap_model(text_encoder),
vae=vae,
unet=unet,
tokenizer=tokenizer,
**pipeline_args,
)
pipeline.save_pretrained(output_dir)
# Save the newly trained embeddings
save_path = os.path.join(output_dir, "learned_embeds.bin")
save_progress(
text_encoder,
placeholder_token_id,
accelerator,
placeholder_token,
save_path,
)
if push_to_hub:
repo.push_to_hub(
commit_message="End of training", blocking=False, auto_lfs_prune=True
)
accelerator.end_training()