Lincoln Stein 6afc0f9b38 add ability to import and edit alternative models online
- !import_model <path/to/model/weights> will import a new model,
  prompt the user for its name and description, write it to the
  models.yaml file, and load it.

- !edit_model <model_name> will bring up a previously-defined model
  and prompt the user to edit its descriptive fields.

Example of !import_model

<pre>
invoke> <b>!import_model models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt</b>
>> Model import in process. Please enter the values needed to configure this model:

Name for this model: <b>waifu-diffusion</b>
Description of this model: <b>Waifu Diffusion v1.3</b>
Configuration file for this model: <b>configs/stable-diffusion/v1-inference.yaml</b>
Default image width: <b>512</b>
Default image height: <b>512</b>
>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu Diffusion v1.3
  height: 512
  weights: models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
  width: 512
OK to import [n]? <b>y</b>
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch08-float16.ckpt
   | LatentDiffusion: Running in eps-prediction mode
   | DiffusionWrapper has 859.52 M params.
   | Making attention of type 'vanilla' with 512 in_channels
   | Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
   | Making attention of type 'vanilla' with 512 in_channels
   | Using faster float16 precision
</pre>

Example of !edit_model

<pre>
invoke> <b>!edit_model waifu-diffusion</b>
>> Editing model waifu-diffusion from configuration file ./configs/models.yaml
description: <b>Waifu diffusion v1.4beta</b>
weights: models/ldm/stable-diffusion-v1/<b>model-epoch10-float16.ckpt</b>
config: configs/stable-diffusion/v1-inference.yaml
width: 512
height: 512

>> New configuration:
waifu-diffusion:
  config: configs/stable-diffusion/v1-inference.yaml
  description: Waifu diffusion v1.4beta
  weights: models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
  height: 512
  width: 512

OK to import [n]? y
>> Caching model stable-diffusion-1.4 in system RAM
>> Loading waifu-diffusion from models/ldm/stable-diffusion-v1/model-epoch10-float16.ckpt
...
</pre>
2022-10-13 23:48:07 -04:00
2022-09-18 00:13:45 +02:00
2022-10-08 11:57:18 -04:00
2022-08-10 16:30:49 +02:00
2022-10-10 03:13:56 +02:00
2022-10-04 14:37:32 -04:00
2022-09-16 17:46:57 -04:00
2022-08-29 16:58:41 -05:00
2022-10-11 16:28:48 +13:00
2022-09-27 01:39:17 +02:00
2022-09-18 11:12:45 +02:00
2022-09-21 13:42:47 -04:00
2022-10-09 11:38:39 -04:00
2022-10-04 23:05:40 -04:00

InvokeAI: A Stable Diffusion Toolkit

Note: This fork is rapidly evolving. Please use the Issues tab to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.

This repository was formally known as lstein/stable-diffusion

Table of Contents

project logo

discord badge

latest release badge github stars badge github forks badge

CI checks on main badge CI checks on dev badge latest commit to dev badge

github open issues badge github open prs badge

This is a fork of CompVis/stable-diffusion, the open source text-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, with GPU cards with as little as 4 GB or RAM. It provides both a polished Web interface, and an easy-to-use command-line interface.

Note: This fork is rapidly evolving. Please use the Issues tab to report bugs and make feature requests. Be sure to use the provided templates. They will help aid diagnose issues faster.

Table of Contents

  1. Installation
  2. Hardware Requirements
  3. Features
  4. Latest Changes
  5. Troubleshooting
  6. Contributing
  7. Contributors
  8. Support
  9. Further Reading

Installation

This fork is supported across multiple platforms. You can find individual installation instructions below.

Hardware Requirements

System

You wil need one of the following:

  • An NVIDIA-based graphics card with 4 GB or more VRAM memory.
  • An Apple computer with an M1 chip.

Memory

  • At least 12 GB Main Memory RAM.

Disk

  • At least 6 GB of free disk space for the machine learning model, Python, and all its dependencies.

Note

If you have a Nvidia 10xx series card (e.g. the 1080ti), please run the dream script in full-precision mode as shown below.

Similarly, specify full-precision mode on Apple M1 hardware.

Precision is auto configured based on the device. If however you encounter errors like 'expected type Float but found Half' or 'not implemented for Half' you can try starting invoke.py with the --precision=float32 flag:

(ldm) ~/stable-diffusion$ python scripts/invoke.py --precision=float32

Features

Major Features

Other Features

Latest Changes

  • vNEXT (TODO 2022)

    • Deprecated --full_precision / -F. Simply omit it and invoke.py will auto configure. To switch away from auto use the new flag like --precision=float32.
  • v1.14 (11 September 2022)

    • Memory optimizations for small-RAM cards. 512x512 now possible on 4 GB GPUs.
    • Full support for Apple hardware with M1 or M2 chips.
    • Add "seamless mode" for circular tiling of image. Generates beautiful effects. (prixt).
    • Inpainting support.
    • Improved web server GUI.
    • Lots of code and documentation cleanups.
  • v1.13 (3 September 2022

    • Support image variations (see VARIATIONS (Kevin Gibbons and many contributors and reviewers)
    • Supports a Google Colab notebook for a standalone server running on Google hardware Arturo Mendivil
    • WebUI supports GFPGAN/ESRGAN facial reconstruction and upscaling Kevin Gibbons
    • WebUI supports incremental display of in-progress images during generation Kevin Gibbons
    • A new configuration file scheme that allows new models (including upcoming stable-diffusion-v1.5) to be added without altering the code. (David Wager)
    • Can specify --grid on invoke.py command line as the default.
    • Miscellaneous internal bug and stability fixes.
    • Works on M1 Apple hardware.
    • Multiple bug fixes.

For older changelogs, please visit the CHANGELOG.

Troubleshooting

Please check out our Q&A to get solutions for common installation problems and other issues.

Contributing

Anyone who wishes to contribute to this project, whether documentation, features, bug fixes, code cleanup, testing, or code reviews, is very much encouraged to do so. If you are unfamiliar with how to contribute to GitHub projects, here is a Getting Started Guide.

A full set of contribution guidelines, along with templates, are in progress, but for now the most important thing is to make your pull request against the "development" branch, and not against "main". This will help keep public breakage to a minimum and will allow you to propose more radical changes.

Contributors

This fork is a combined effort of various people from across the world. Check out the list of all these amazing people. We thank them for their time, hard work and effort.

Support

For support, please use this repository's GitHub Issues tracking service. Feel free to send me an email if you use and like the script.

Original portions of the software are Copyright (c) 2020 Lincoln D. Stein

Further Reading

Please see the original README for more information on this software and underlying algorithm, located in the file README-CompViz.md.

Description
No description provided
Readme 397 MiB
Languages
TypeScript 59.1%
Python 40.3%
Shell 0.3%