InvokeAI/invokeai/backend/model_management/models/lora.py

694 lines
22 KiB
Python

import bisect
import os
from enum import Enum
from pathlib import Path
from typing import Dict, Optional, Union
import torch
from safetensors.torch import load_file
from .base import (
BaseModelType,
InvalidModelException,
ModelBase,
ModelConfigBase,
ModelNotFoundException,
ModelType,
SubModelType,
classproperty,
)
class LoRAModelFormat(str, Enum):
LyCORIS = "lycoris"
Diffusers = "diffusers"
class LoRAModel(ModelBase):
# model_size: int
class Config(ModelConfigBase):
model_format: LoRAModelFormat # TODO:
def __init__(self, model_path: str, base_model: BaseModelType, model_type: ModelType):
assert model_type == ModelType.Lora
super().__init__(model_path, base_model, model_type)
self.model_size = os.path.getsize(self.model_path)
def get_size(self, child_type: Optional[SubModelType] = None):
if child_type is not None:
raise Exception("There is no child models in lora")
return self.model_size
def get_model(
self,
torch_dtype: Optional[torch.dtype],
child_type: Optional[SubModelType] = None,
):
if child_type is not None:
raise Exception("There is no child models in lora")
model = LoRAModelRaw.from_checkpoint(
file_path=self.model_path,
dtype=torch_dtype,
base_model=self.base_model,
)
self.model_size = model.calc_size()
return model
@classproperty
def save_to_config(cls) -> bool:
return True
@classmethod
def detect_format(cls, path: str):
if not os.path.exists(path):
raise ModelNotFoundException()
if os.path.isdir(path):
if os.path.exists(os.path.join(path, "pytorch_lora_weights.bin")):
return LoRAModelFormat.Diffusers
if os.path.isfile(path):
if any([path.endswith(f".{ext}") for ext in ["safetensors", "ckpt", "pt"]]):
return LoRAModelFormat.LyCORIS
raise InvalidModelException(f"Not a valid model: {path}")
@classmethod
def convert_if_required(
cls,
model_path: str,
output_path: str,
config: ModelConfigBase,
base_model: BaseModelType,
) -> str:
if cls.detect_format(model_path) == LoRAModelFormat.Diffusers:
# TODO: add diffusers lora when it stabilizes a bit
raise NotImplementedError("Diffusers lora not supported")
else:
return model_path
class LoRALayerBase:
# rank: Optional[int]
# alpha: Optional[float]
# bias: Optional[torch.Tensor]
# layer_key: str
# @property
# def scale(self):
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
def __init__(
self,
layer_key: str,
values: dict,
):
if "alpha" in values:
self.alpha = values["alpha"].item()
else:
self.alpha = None
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
self.bias = torch.sparse_coo_tensor(
values["bias_indices"],
values["bias_values"],
tuple(values["bias_size"]),
)
else:
self.bias = None
self.rank = None # set in layer implementation
self.layer_key = layer_key
def get_weight(self, orig_weight: torch.Tensor):
raise NotImplementedError()
def calc_size(self) -> int:
model_size = 0
for val in [self.bias]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if self.bias is not None:
self.bias = self.bias.to(device=device, dtype=dtype)
# TODO: find and debug lora/locon with bias
class LoRALayer(LoRALayerBase):
# up: torch.Tensor
# mid: Optional[torch.Tensor]
# down: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.up = values["lora_up.weight"]
self.down = values["lora_down.weight"]
if "lora_mid.weight" in values:
self.mid = values["lora_mid.weight"]
else:
self.mid = None
self.rank = self.down.shape[0]
def get_weight(self, orig_weight: torch.Tensor):
if self.mid is not None:
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
else:
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.up, self.mid, self.down]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.up = self.up.to(device=device, dtype=dtype)
self.down = self.down.to(device=device, dtype=dtype)
if self.mid is not None:
self.mid = self.mid.to(device=device, dtype=dtype)
class LoHALayer(LoRALayerBase):
# w1_a: torch.Tensor
# w1_b: torch.Tensor
# w2_a: torch.Tensor
# w2_b: torch.Tensor
# t1: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.w1_a = values["hada_w1_a"]
self.w1_b = values["hada_w1_b"]
self.w2_a = values["hada_w2_a"]
self.w2_b = values["hada_w2_b"]
if "hada_t1" in values:
self.t1 = values["hada_t1"]
else:
self.t1 = None
if "hada_t2" in values:
self.t2 = values["hada_t2"]
else:
self.t2 = None
self.rank = self.w1_b.shape[0]
def get_weight(self, orig_weight: torch.Tensor):
if self.t1 is None:
weight = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
else:
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
weight = rebuild1 * rebuild2
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.t1 is not None:
self.t1 = self.t1.to(device=device, dtype=dtype)
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class LoKRLayer(LoRALayerBase):
# w1: Optional[torch.Tensor] = None
# w1_a: Optional[torch.Tensor] = None
# w1_b: Optional[torch.Tensor] = None
# w2: Optional[torch.Tensor] = None
# w2_a: Optional[torch.Tensor] = None
# w2_b: Optional[torch.Tensor] = None
# t2: Optional[torch.Tensor] = None
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
if "lokr_w1" in values:
self.w1 = values["lokr_w1"]
self.w1_a = None
self.w1_b = None
else:
self.w1 = None
self.w1_a = values["lokr_w1_a"]
self.w1_b = values["lokr_w1_b"]
if "lokr_w2" in values:
self.w2 = values["lokr_w2"]
self.w2_a = None
self.w2_b = None
else:
self.w2 = None
self.w2_a = values["lokr_w2_a"]
self.w2_b = values["lokr_w2_b"]
if "lokr_t2" in values:
self.t2 = values["lokr_t2"]
else:
self.t2 = None
if "lokr_w1_b" in values:
self.rank = values["lokr_w1_b"].shape[0]
elif "lokr_w2_b" in values:
self.rank = values["lokr_w2_b"].shape[0]
else:
self.rank = None # unscaled
def get_weight(self, orig_weight: torch.Tensor):
w1 = self.w1
if w1 is None:
w1 = self.w1_a @ self.w1_b
w2 = self.w2
if w2 is None:
if self.t2 is None:
w2 = self.w2_a @ self.w2_b
else:
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
weight = torch.kron(w1, w2)
return weight
def calc_size(self) -> int:
model_size = super().calc_size()
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
if val is not None:
model_size += val.nelement() * val.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
if self.w1 is not None:
self.w1 = self.w1.to(device=device, dtype=dtype)
else:
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
if self.w2 is not None:
self.w2 = self.w2.to(device=device, dtype=dtype)
else:
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
if self.t2 is not None:
self.t2 = self.t2.to(device=device, dtype=dtype)
class FullLayer(LoRALayerBase):
# weight: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.weight = values["diff"]
if len(values.keys()) > 1:
_keys = list(values.keys())
_keys.remove("diff")
raise NotImplementedError(f"Unexpected keys in lora diff layer: {_keys}")
self.rank = None # unscaled
def get_weight(self, orig_weight: torch.Tensor):
return self.weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
class IA3Layer(LoRALayerBase):
# weight: torch.Tensor
# on_input: torch.Tensor
def __init__(
self,
layer_key: str,
values: dict,
):
super().__init__(layer_key, values)
self.weight = values["weight"]
self.on_input = values["on_input"]
self.rank = None # unscaled
def get_weight(self, orig_weight: torch.Tensor):
weight = self.weight
if not self.on_input:
weight = weight.reshape(-1, 1)
return orig_weight * weight
def calc_size(self) -> int:
model_size = super().calc_size()
model_size += self.weight.nelement() * self.weight.element_size()
model_size += self.on_input.nelement() * self.on_input.element_size()
return model_size
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
super().to(device=device, dtype=dtype)
self.weight = self.weight.to(device=device, dtype=dtype)
self.on_input = self.on_input.to(device=device, dtype=dtype)
# TODO: rename all methods used in model logic with Info postfix and remove here Raw postfix
class LoRAModelRaw: # (torch.nn.Module):
_name: str
layers: Dict[str, LoRALayer]
def __init__(
self,
name: str,
layers: Dict[str, LoRALayer],
):
self._name = name
self.layers = layers
@property
def name(self):
return self._name
def to(
self,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
# TODO: try revert if exception?
for key, layer in self.layers.items():
layer.to(device=device, dtype=dtype)
def calc_size(self) -> int:
model_size = 0
for _, layer in self.layers.items():
model_size += layer.calc_size()
return model_size
@classmethod
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict):
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
diffusers format, then this function will have no effect.
This function is adapted from:
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
Args:
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
Raises:
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
Returns:
Dict[str, Tensor]: The diffusers-format state_dict.
"""
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
not_converted_count = 0 # The number of keys that were not converted.
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
# `input_blocks_4_1_proj_in`.
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
stability_unet_keys.sort()
new_state_dict = dict()
for full_key, value in state_dict.items():
if full_key.startswith("lora_unet_"):
search_key = full_key.replace("lora_unet_", "")
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
position = bisect.bisect_right(stability_unet_keys, search_key)
map_key = stability_unet_keys[position - 1]
# Now, check if the map_key *actually* matches the search_key.
if search_key.startswith(map_key):
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
new_state_dict[new_key] = value
converted_count += 1
else:
new_state_dict[full_key] = value
not_converted_count += 1
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
new_state_dict[full_key] = value
continue
else:
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
if converted_count > 0 and not_converted_count > 0:
raise ValueError(
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
f" not_converted={not_converted_count}"
)
return new_state_dict
@classmethod
def from_checkpoint(
cls,
file_path: Union[str, Path],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
base_model: Optional[BaseModelType] = None,
):
device = device or torch.device("cpu")
dtype = dtype or torch.float32
if isinstance(file_path, str):
file_path = Path(file_path)
model = cls(
name=file_path.stem, # TODO:
layers=dict(),
)
if file_path.suffix == ".safetensors":
state_dict = load_file(file_path.absolute().as_posix(), device="cpu")
else:
state_dict = torch.load(file_path, map_location="cpu")
state_dict = cls._group_state(state_dict)
if base_model == BaseModelType.StableDiffusionXL:
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
for layer_key, values in state_dict.items():
# lora and locon
if "lora_down.weight" in values:
layer = LoRALayer(layer_key, values)
# loha
elif "hada_w1_b" in values:
layer = LoHALayer(layer_key, values)
# lokr
elif "lokr_w1_b" in values or "lokr_w1" in values:
layer = LoKRLayer(layer_key, values)
# diff
elif "diff" in values:
layer = FullLayer(layer_key, values)
# ia3
elif "weight" in values and "on_input" in values:
layer = IA3Layer(layer_key, values)
else:
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
raise Exception("Unknown lora format!")
# lower memory consumption by removing already parsed layer values
state_dict[layer_key].clear()
layer.to(device=device, dtype=dtype)
model.layers[layer_key] = layer
return model
@staticmethod
def _group_state(state_dict: dict):
state_dict_groupped = dict()
for key, value in state_dict.items():
stem, leaf = key.split(".", 1)
if stem not in state_dict_groupped:
state_dict_groupped[stem] = dict()
state_dict_groupped[stem][leaf] = value
return state_dict_groupped
# code from
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
def make_sdxl_unet_conversion_map():
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
unet_conversion_map_layer = []
for i in range(3): # num_blocks is 3 in sdxl
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
# if i > 0: commentout for sdxl
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2*j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0.", "norm1."),
("in_layers.2.", "conv1."),
("out_layers.0.", "norm2."),
("out_layers.3.", "conv2."),
("emb_layers.1.", "time_emb_proj."),
("skip_connection.", "conv_shortcut."),
]
unet_conversion_map = []
for sd, hf in unet_conversion_map_layer:
if "resnets" in hf:
for sd_res, hf_res in unet_conversion_map_resnet:
unet_conversion_map.append((sd + sd_res, hf + hf_res))
else:
unet_conversion_map.append((sd, hf))
for j in range(2):
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
sd_time_embed_prefix = f"time_embed.{j*2}."
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
for j in range(2):
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
sd_label_embed_prefix = f"label_emb.0.{j*2}."
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
unet_conversion_map.append(("out.0.", "conv_norm_out."))
unet_conversion_map.append(("out.2.", "conv_out."))
return unet_conversion_map
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
}