mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
335 lines
12 KiB
Python
335 lines
12 KiB
Python
'''
|
|
ldm.invoke.generator.inpaint descends from ldm.invoke.generator
|
|
'''
|
|
|
|
import math
|
|
import torch
|
|
import torchvision.transforms as T
|
|
import numpy as np
|
|
import cv2 as cv
|
|
import PIL
|
|
from PIL import Image, ImageFilter, ImageOps
|
|
from skimage.exposure.histogram_matching import match_histograms
|
|
from einops import rearrange, repeat
|
|
from ldm.invoke.devices import choose_autocast
|
|
from ldm.invoke.generator.img2img import Img2Img
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.ksampler import KSampler
|
|
from ldm.invoke.generator.base import downsampling
|
|
|
|
class Inpaint(Img2Img):
|
|
def __init__(self, model, precision):
|
|
self.init_latent = None
|
|
self.pil_image = None
|
|
self.pil_mask = None
|
|
self.mask_blur_radius = 0
|
|
super().__init__(model, precision)
|
|
|
|
# Outpaint support code
|
|
def get_tile_images(self, image: np.ndarray, width=8, height=8):
|
|
_nrows, _ncols, depth = image.shape
|
|
_strides = image.strides
|
|
|
|
nrows, _m = divmod(_nrows, height)
|
|
ncols, _n = divmod(_ncols, width)
|
|
if _m != 0 or _n != 0:
|
|
return None
|
|
|
|
return np.lib.stride_tricks.as_strided(
|
|
np.ravel(image),
|
|
shape=(nrows, ncols, height, width, depth),
|
|
strides=(height * _strides[0], width * _strides[1], *_strides),
|
|
writeable=False
|
|
)
|
|
|
|
def tile_fill_missing(self, im: Image.Image, tile_size: int = 16, seed: int = None) -> Image:
|
|
# Only fill if there's an alpha layer
|
|
if im.mode != 'RGBA':
|
|
return im
|
|
|
|
a = np.asarray(im, dtype=np.uint8)
|
|
|
|
tile_size = (tile_size, tile_size)
|
|
|
|
# Get the image as tiles of a specified size
|
|
tiles = self.get_tile_images(a,*tile_size).copy()
|
|
|
|
# Get the mask as tiles
|
|
tiles_mask = tiles[:,:,:,:,3]
|
|
|
|
# Find any mask tiles with any fully transparent pixels (we will be replacing these later)
|
|
tmask_shape = tiles_mask.shape
|
|
tiles_mask = tiles_mask.reshape(math.prod(tiles_mask.shape))
|
|
n,ny = (math.prod(tmask_shape[0:2])), math.prod(tmask_shape[2:])
|
|
tiles_mask = (tiles_mask > 0)
|
|
tiles_mask = tiles_mask.reshape((n,ny)).all(axis = 1)
|
|
|
|
# Get RGB tiles in single array and filter by the mask
|
|
tshape = tiles.shape
|
|
tiles_all = tiles.reshape((math.prod(tiles.shape[0:2]), * tiles.shape[2:]))
|
|
filtered_tiles = tiles_all[tiles_mask]
|
|
|
|
if len(filtered_tiles) == 0:
|
|
return im
|
|
|
|
# Find all invalid tiles and replace with a random valid tile
|
|
replace_count = (tiles_mask == False).sum()
|
|
rng = np.random.default_rng(seed = seed)
|
|
tiles_all[np.logical_not(tiles_mask)] = filtered_tiles[rng.choice(filtered_tiles.shape[0], replace_count),:,:,:]
|
|
|
|
# Convert back to an image
|
|
tiles_all = tiles_all.reshape(tshape)
|
|
tiles_all = tiles_all.swapaxes(1,2)
|
|
st = tiles_all.reshape((math.prod(tiles_all.shape[0:2]), math.prod(tiles_all.shape[2:4]), tiles_all.shape[4]))
|
|
si = Image.fromarray(st, mode='RGBA')
|
|
|
|
return si
|
|
|
|
|
|
def mask_edge(self, mask: Image, edge_size: int, edge_blur: int) -> Image:
|
|
npimg = np.asarray(mask, dtype=np.uint8)
|
|
|
|
# Detect any partially transparent regions
|
|
npgradient = np.uint8(255 * (1.0 - np.floor(np.abs(0.5 - np.float32(npimg) / 255.0) * 2.0)))
|
|
|
|
# Detect hard edges
|
|
npedge = cv.Canny(npimg, threshold1=100, threshold2=200)
|
|
|
|
# Combine
|
|
npmask = npgradient + npedge
|
|
|
|
# Expand
|
|
npmask = cv.dilate(npmask, np.ones((3,3), np.uint8), iterations = int(edge_size / 2))
|
|
|
|
new_mask = Image.fromarray(npmask)
|
|
|
|
if edge_blur > 0:
|
|
new_mask = new_mask.filter(ImageFilter.BoxBlur(edge_blur))
|
|
|
|
return ImageOps.invert(new_mask)
|
|
|
|
|
|
def seam_paint(self,
|
|
im: Image.Image,
|
|
seam_size: int,
|
|
seam_blur: int,
|
|
prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,strength,
|
|
noise
|
|
) -> Image.Image:
|
|
hard_mask = self.pil_image.split()[-1].copy()
|
|
mask = self.mask_edge(hard_mask, seam_size, seam_blur)
|
|
|
|
make_image = self.get_make_image(
|
|
prompt,
|
|
sampler,
|
|
steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
init_image = im.copy().convert('RGBA'),
|
|
mask_image = mask.convert('RGB'), # Code currently requires an RGB mask
|
|
strength = strength,
|
|
mask_blur_radius = 0,
|
|
seam_size = 0
|
|
)
|
|
|
|
result = make_image(noise)
|
|
|
|
return result
|
|
|
|
|
|
@torch.no_grad()
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,init_image,mask_image,strength,
|
|
mask_blur_radius: int = 8,
|
|
# Seam settings - when 0, doesn't fill seam
|
|
seam_size: int = 0,
|
|
seam_blur: int = 0,
|
|
seam_strength: float = 0.7,
|
|
seam_steps: int = 10,
|
|
tile_size: int = 32,
|
|
step_callback=None,
|
|
inpaint_replace=False,
|
|
inpaint_width=None,
|
|
inpaint_height=None,
|
|
**kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and
|
|
the initial image + mask. Return value depends on the seed at
|
|
the time you call it. kwargs are 'init_latent' and 'strength'
|
|
"""
|
|
|
|
self.inpaint_width = inpaint_width
|
|
self.inpaint_height = inpaint_height
|
|
|
|
if isinstance(init_image, PIL.Image.Image):
|
|
self.pil_image = init_image
|
|
|
|
# Fill missing areas of original image
|
|
init_filled = self.tile_fill_missing(
|
|
self.pil_image.copy(),
|
|
seed = self.seed,
|
|
tile_size = tile_size
|
|
)
|
|
init_filled.paste(init_image, (0,0), init_image.split()[-1])
|
|
|
|
# Resize if requested for inpainting
|
|
if inpaint_width and inpaint_height:
|
|
init_filled = init_filled.resize((inpaint_width, inpaint_height))
|
|
|
|
# Create init tensor
|
|
init_image = self._image_to_tensor(init_filled.convert('RGB'))
|
|
|
|
if isinstance(mask_image, PIL.Image.Image):
|
|
self.pil_mask = mask_image
|
|
|
|
# Resize if requested for inpainting
|
|
if inpaint_width and inpaint_height:
|
|
mask_image = mask_image.resize((inpaint_width, inpaint_height))
|
|
|
|
mask_image = mask_image.resize(
|
|
(
|
|
mask_image.width // downsampling,
|
|
mask_image.height // downsampling
|
|
),
|
|
resample=Image.Resampling.NEAREST
|
|
)
|
|
mask_image = self._image_to_tensor(mask_image,normalize=False)
|
|
|
|
self.mask_blur_radius = mask_blur_radius
|
|
|
|
# klms samplers not supported yet, so ignore previous sampler
|
|
if isinstance(sampler,KSampler):
|
|
print(
|
|
f">> Using recommended DDIM sampler for inpainting."
|
|
)
|
|
sampler = DDIMSampler(self.model, device=self.model.device)
|
|
|
|
sampler.make_schedule(
|
|
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
|
)
|
|
|
|
mask_image = mask_image[0][0].unsqueeze(0).repeat(4,1,1).unsqueeze(0)
|
|
mask_image = repeat(mask_image, '1 ... -> b ...', b=1)
|
|
|
|
scope = choose_autocast(self.precision)
|
|
with scope(self.model.device.type):
|
|
self.init_latent = self.model.get_first_stage_encoding(
|
|
self.model.encode_first_stage(init_image)
|
|
) # move to latent space
|
|
|
|
t_enc = int(strength * steps)
|
|
# todo: support cross-attention control
|
|
uc, c, _ = conditioning
|
|
|
|
print(f">> target t_enc is {t_enc} steps")
|
|
|
|
@torch.no_grad()
|
|
def make_image(x_T):
|
|
# encode (scaled latent)
|
|
z_enc = sampler.stochastic_encode(
|
|
self.init_latent,
|
|
torch.tensor([t_enc]).to(self.model.device),
|
|
noise=x_T
|
|
)
|
|
|
|
# to replace masked area with latent noise, weighted by inpaint_replace strength
|
|
if inpaint_replace > 0.0:
|
|
print(f'>> inpaint will replace what was under the mask with a strength of {inpaint_replace}')
|
|
l_noise = self.get_noise(kwargs['width'],kwargs['height'])
|
|
inverted_mask = 1.0-mask_image # there will be 1s where the mask is
|
|
masked_region = (1.0-inpaint_replace) * inverted_mask * z_enc + inpaint_replace * inverted_mask * l_noise
|
|
z_enc = z_enc * mask_image + masked_region
|
|
|
|
# decode it
|
|
samples = sampler.decode(
|
|
z_enc,
|
|
c,
|
|
t_enc,
|
|
img_callback = step_callback,
|
|
unconditional_guidance_scale = cfg_scale,
|
|
unconditional_conditioning = uc,
|
|
mask = mask_image,
|
|
init_latent = self.init_latent
|
|
)
|
|
|
|
result = self.sample_to_image(samples)
|
|
|
|
# Seam paint if this is our first pass (seam_size set to 0 during seam painting)
|
|
if seam_size > 0:
|
|
result = self.seam_paint(
|
|
result,
|
|
seam_size,
|
|
seam_blur,
|
|
prompt,
|
|
sampler,
|
|
seam_steps,
|
|
cfg_scale,
|
|
ddim_eta,
|
|
conditioning,
|
|
seam_strength,
|
|
x_T)
|
|
|
|
return result
|
|
|
|
return make_image
|
|
|
|
|
|
def color_correct(self, image: Image.Image, base_image: Image.Image, mask: Image.Image, mask_blur_radius: int) -> Image.Image:
|
|
# Get the original alpha channel of the mask if there is one.
|
|
# Otherwise it is some other black/white image format ('1', 'L' or 'RGB')
|
|
pil_init_mask = mask.getchannel('A') if mask.mode == 'RGBA' else mask.convert('L')
|
|
pil_init_image = base_image.convert('RGBA') # Add an alpha channel if one doesn't exist
|
|
|
|
# Build an image with only visible pixels from source to use as reference for color-matching.
|
|
init_rgb_pixels = np.asarray(base_image.convert('RGB'), dtype=np.uint8)
|
|
init_a_pixels = np.asarray(pil_init_image.getchannel('A'), dtype=np.uint8)
|
|
init_mask_pixels = np.asarray(pil_init_mask, dtype=np.uint8)
|
|
|
|
# Get numpy version of result
|
|
np_image = np.asarray(image, dtype=np.uint8)
|
|
|
|
# Mask and calculate mean and standard deviation
|
|
mask_pixels = init_a_pixels * init_mask_pixels > 0
|
|
np_init_rgb_pixels_masked = init_rgb_pixels[mask_pixels, :]
|
|
np_image_masked = np_image[mask_pixels, :]
|
|
|
|
init_means = np_init_rgb_pixels_masked.mean(axis=0)
|
|
init_std = np_init_rgb_pixels_masked.std(axis=0)
|
|
gen_means = np_image_masked.mean(axis=0)
|
|
gen_std = np_image_masked.std(axis=0)
|
|
|
|
# Color correct
|
|
np_matched_result = np_image.copy()
|
|
np_matched_result[:,:,:] = (((np_matched_result[:,:,:].astype(np.float32) - gen_means[None,None,:]) / gen_std[None,None,:]) * init_std[None,None,:] + init_means[None,None,:]).clip(0, 255).astype(np.uint8)
|
|
matched_result = Image.fromarray(np_matched_result, mode='RGB')
|
|
|
|
# Blur the mask out (into init image) by specified amount
|
|
if mask_blur_radius > 0:
|
|
nm = np.asarray(pil_init_mask, dtype=np.uint8)
|
|
nmd = cv.erode(nm, kernel=np.ones((3,3), dtype=np.uint8), iterations=int(mask_blur_radius / 2))
|
|
pmd = Image.fromarray(nmd, mode='L')
|
|
blurred_init_mask = pmd.filter(ImageFilter.BoxBlur(mask_blur_radius))
|
|
else:
|
|
blurred_init_mask = pil_init_mask
|
|
|
|
# Paste original on color-corrected generation (using blurred mask)
|
|
matched_result.paste(base_image, (0,0), mask = blurred_init_mask)
|
|
return matched_result
|
|
|
|
|
|
def sample_to_image(self, samples)->Image.Image:
|
|
gen_result = super().sample_to_image(samples).convert('RGB')
|
|
|
|
# Resize if necessary
|
|
if self.inpaint_width and self.inpaint_height:
|
|
gen_result = gen_result.resize(self.pil_image.size)
|
|
|
|
if self.pil_image is None or self.pil_mask is None:
|
|
return gen_result
|
|
|
|
corrected_result = self.color_correct(gen_result, self.pil_image, self.pil_mask, self.mask_blur_radius)
|
|
|
|
return corrected_result
|