InvokeAI/ldm/invoke/CLI.py
Kevin Turner 6fdbc1978d
use 🧨diffusers model (#1583)
* initial commit of DiffusionPipeline class

* spike: proof of concept using diffusers for txt2img

* doc: type hints for Generator

* refactor(model_cache): factor out load_ckpt

* model_cache: add ability to load a diffusers model pipeline

and update associated things in Generate & Generator to not instantly fail when that happens

* model_cache: fix model default image dimensions

* txt2img: support switching diffusers schedulers

* diffusers: let the scheduler do its scaling of the initial latents

Remove IPNDM scheduler; it is not behaving.

* web server: update image_progress callback for diffusers data

* diffusers: restore prompt weighting feature

* diffusers: fix set-sampler error following model switch

* diffusers: use InvokeAIDiffuserComponent for conditioning

* cross_attention_control: stub (no-op) implementations for diffusers

* model_cache: let offload_model work with DiffusionPipeline, sorta.

* models.yaml.example: add diffusers-format model, set as default

* test-invoke-conda: use diffusers-format model
test-invoke-conda: put huggingface-token where the library can use it

* environment-mac: upgrade to diffusers 0.7 (from 0.6)

this was already done for linux; mac must have been lost in the merge.

* preload_models: explicitly load diffusers models

In non-interactive mode too, as long as you're logged in.

* fix(model_cache): don't check `model.config` in diffusers format

clean-up from recent merge.

* diffusers integration: support img2img

* dev: upgrade to diffusers 0.8 (from 0.7.1)

We get to remove some code by using methods that were factored out in the base class.

* refactor: remove backported img2img.get_timesteps

now that we can use it directly from diffusers 0.8.1

* ci: use diffusers model

* dev: upgrade to diffusers 0.9 (from 0.8.1)

* lint: correct annotations for Python 3.9.

* lint: correct AttributeError.name reference for Python 3.9.

* CI: prefer diffusers-1.4 because it no longer requires a token

The RunwayML models still do.

* build: there's yet another place to update requirements?

* configure: try to download models even without token

Models in the CompVis and stabilityai repos no longer require them. (But runwayml still does.)

* configure: add troubleshooting info for config-not-found

* fix(configure): prepend root to config path

* fix(configure): remove second `default: true` from models example

* CI: simplify test-on-push logic now that we don't need secrets

The "test on push but only in forks" logic was only necessary when tests didn't work for PRs-from-forks.

* create an embedding_manager for diffusers

* internal: avoid importing diffusers DummyObject

see https://github.com/huggingface/diffusers/issues/1479

* fix "config attributes…not expected" diffusers warnings.

* fix deprecated scheduler construction

* work around an apparent MPS torch bug that causes conditioning to have no effect

* 🚧 post-rebase repair

* preliminary support for outpainting (no masking yet)

* monkey-patch diffusers.attention and use Invoke lowvram code

* add always_use_cpu arg to bypass MPS

* add cross-attention control support to diffusers (fails on MPS)

For unknown reasons MPS produces garbage output with .swap(). Use
--always_use_cpu arg to invoke.py for now to test this code on MPS.

* diffusers support for the inpainting model

* fix debug_image to not crash with non-RGB images.

* inpainting for the normal model [WIP]

This seems to be performing well until the LAST STEP, at which point it dissolves to confetti.

* fix off-by-one bug in cross-attention-control (#1774)

prompt token sequences begin with a "beginning-of-sequence" marker <bos> and end with a repeated "end-of-sequence" marker <eos> - to make a default prompt length of <bos> + 75 prompt tokens + <eos>. the .swap() code was failing to take the column for <bos> at index 0 into account. the changes here do that, and also add extra handling for a single <eos> (which may be redundant but which is included for completeness).

based on my understanding and some assumptions about how this all works, the reason .swap() nevertheless seemed to do the right thing, to some extent, is because over multiple steps the conditioning process in Stable Diffusion operates as a feedback loop. a change to token n-1 has flow-on effects to how the [1x4x64x64] latent tensor is modified by all the tokens after it, - and as the next step is processed, all the tokens before it as well. intuitively, a token's conditioning effects "echo" throughout the whole length of the prompt. so even though the token at n-1 was being edited when what the user actually wanted was to edit the token at n, it nevertheless still had some non-negligible effect, in roughly the right direction, often enough that it seemed like it was working properly.

* refactor common CrossAttention stuff into a mixin so that the old ldm code can still work if necessary

* inpainting for the normal model. I think it works this time.

* diffusers: reset num_vectors_per_token

sync with 44a0055571

* diffusers: txt2img2img (hires_fix)

with so much slicing and dicing of pipeline methods to stitch them together

* refactor(diffusers): reduce some code duplication amongst the different tasks

* fixup! refactor(diffusers): reduce some code duplication amongst the different tasks

* diffusers: enable DPMSolver++ scheduler

* diffusers: upgrade to diffusers 0.10, add Heun scheduler

* diffusers(ModelCache): stopgap to make from_cpu compatible with diffusers

* CI: default to diffusers-1.5 now that runwayml token requirement is gone

* diffusers: update to 0.10 (and transformers to 4.25)

* diffusers: use xformers when available

diffusers no longer auto-enables this as of 0.10.2.

* diffusers: make masked img2img behave better with multi-step schedulers

re-randomizing the noise each step was confusing them.

* diffusers: work more better with more models.

fixed relative path problem with local models.

fixed models on hub not always having a `fp16` branch.

* diffusers: stopgap fix for attention_maps_callback crash after recent merge

* fixup import merge conflicts

correction for 061c5369a2

* test: add tests/inpainting inputs for masked img2img

* diffusers(AddsMaskedGuidance): partial fix for k-schedulers

Prevents them from crashing, but results are still hot garbage.

* fix --safety_checker arg parsing

and add note to diffusers loader about where safety checker gets called

* generate: fix import error

* CI: don't try to read the old init location

* diffusers: support loading an alternate VAE

* CI: remove sh-syntax if-statement so it doesn't crash powershell

* CI: fold strings in yaml because backslash is not line-continuation in powershell

* attention maps callback stuff for diffusers

* build: fix syntax error in environment-mac

* diffusers: add INITIAL_MODELS with diffusers-compatible repos

* re-enable the embedding manager; closes #1778

* Squashed commit of the following:

commit e4a956abc37fcb5cf188388b76b617bc5c8fda7d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:43:07 2022 +0100

    import new load handling from EmbeddingManager and cleanup

commit c4abe91a5ba0d415b45bf734068385668b7a66e6
Merge: 032e856e 1efc6397
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:09:53 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers_with_textual_inversion_manager

commit 032e856eefb3bbc39534f5daafd25764bcfcef8b
Merge: 8b4f0fe9 bc515e24
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:08:01 2022 +0100

    Merge remote-tracking branch 'upstream/dev/diffusers' into dev/diffusers_with_textual_inversion_manager

commit 1efc6397fc6e61c1aff4b0258b93089d61de5955
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 15:04:28 2022 +0100

    cleanup and add performance notes

commit e400f804ac471a0ca2ba432fd658778b20c7bdab
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:45:07 2022 +0100

    fix bug and update unit tests

commit deb9ae0ae1016750e93ce8275734061f7285a231
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 14:28:29 2022 +0100

    textual inversion manager seems to work

commit 162e02505dec777e91a983c4d0fb52e950d25ff0
Merge: cbad4583 12769b3d
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:58:03 2022 +0100

    Merge branch 'main' into feature_textual_inversion_mgr

commit cbad45836c6aace6871a90f2621a953f49433131
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:54:10 2022 +0100

    use position embeddings

commit 070344c69b0e0db340a183857d0a787b348681d3
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:53:47 2022 +0100

    Don't crash CLI on exceptions

commit b035ac8c6772dfd9ba41b8eeb9103181cda028f8
Author: Damian Stewart <d@damianstewart.com>
Date:   Sun Dec 18 11:11:55 2022 +0100

    add missing position_embeddings

commit 12769b3d3562ef71e0f54946b532ad077e10043c
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:33:25 2022 +0100

    debugging why it don't work

commit bafb7215eabe1515ca5e8388fd3bb2f3ac5362cf
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 13:21:33 2022 +0100

    debugging why it don't work

commit 664a6e9e14
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit 8b4f0fe9d6e4e2643b36dfa27864294785d7ba4e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 12:48:38 2022 +0100

    use TextualInversionManager in place of embeddings (wip, doesn't work)

commit ffbe1ab11163ba712e353d89404e301d0e0c6cdf
Merge: 6e4dad60 023df37e
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:37:31 2022 +0100

    Merge branch 'feature_textual_inversion_mgr' into dev/diffusers

commit 023df37eff
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:36:54 2022 +0100

    cleanup

commit 05fac594ea
Author: Damian Stewart <d@damianstewart.com>
Date:   Fri Dec 16 02:07:49 2022 +0100

    tweak error checking

commit 009f32ed39
Author: damian <null@damianstewart.com>
Date:   Thu Dec 15 21:29:47 2022 +0100

    unit tests passing for embeddings with vector length >1

commit beb1b08d9a
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:39:09 2022 +0100

    more explicit equality tests when overwriting

commit 44d8a5a7c8
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 13:30:13 2022 +0100

    wip textual inversion manager (unit tests passing for 1v embedding overwriting)

commit 417c2b57d9
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 12:30:55 2022 +0100

    wip textual inversion manager (unit tests passing for base stuff + padding)

commit 2e80872e3b
Author: Damian Stewart <d@damianstewart.com>
Date:   Thu Dec 15 10:57:57 2022 +0100

    wip new TextualInversionManager

* stop using WeightedFrozenCLIPEmbedder

* store diffusion models locally

- configure_invokeai.py reconfigured to store diffusion models rather than
  CompVis models
- hugging face caching model is used, but cache is set to ~/invokeai/models/repo_id
- models.yaml does **NOT** use path, just repo_id
- "repo_name" changed to "repo_id" to following hugging face conventions
- Models are loaded with full precision pending further work.

* allow non-local files during development

* path takes priority over repo_id

* MVP for model_cache and configure_invokeai

- Feature complete (almost)

- configure_invokeai.py downloads both .ckpt and diffuser models,
  along with their VAEs. Both types of download are controlled by
  a unified INITIAL_MODELS.yaml file.

- model_cache can load both type of model and switches back and forth
  in CPU. No memory leaks detected

TO DO:

  1. I have not yet turned on the LocalOnly flag for diffuser models, so
     the code will check the Hugging Face repo for updates before using the
     locally cached models. This will break firewalled systems. I am thinking
     of putting in a global check for internet connectivity at startup time
     and setting the LocalOnly flag based on this. It would be good to check
     updates if there is connectivity.

  2. I have not gone completely through INITIAL_MODELS.yaml to check which
     models are available as diffusers and which are not. So models like
     PaperCut and VoxelArt may not load properly. The runway and stability
     models are checked, as well as the Trinart models.

  3. Add stanzas for SD 2.0 and 2.1 in INITIAL_MODELS.yaml

REMAINING PROBLEMS NOT DIRECTLY RELATED TO MODEL_CACHE:

  1. When loading a .ckpt file there are lots of messages like this:

     Warning! ldm.modules.attention.CrossAttention is no longer being
     maintained. Please use InvokeAICrossAttention instead.

     I'm not sure how to address this.

  2. The ckpt models ***don't actually run*** due to the lack of special-case
     support for them in the generator objects. For example, here's the hard
     crash you get when you run txt2img against the legacy waifu-diffusion-1.3
     model:
```
     >> An error occurred:
     Traceback (most recent call last):
       File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 140, in main
           main_loop(gen, opt)
      File "/data/lstein/InvokeAI/ldm/invoke/CLI.py", line 371, in main_loop
         gen.prompt2image(
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
	 results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
         image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
         pipeline_output = pipeline.image_from_embeddings(
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1265, in __getattr__
         raise AttributeError("'{}' object has no attribute '{}'".format(
     AttributeError: 'LatentDiffusion' object has no attribute 'image_from_embeddings'
```

  3. The inpainting diffusion model isn't working. Here's the output of "banana
     sushi" when inpainting-1.5 is loaded:

```
    Traceback (most recent call last):
      File "/data/lstein/InvokeAI/ldm/generate.py", line 496, in prompt2image
        results = generator.generate(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/base.py", line 108, in generate
        image = make_image(x_T)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/txt2img.py", line 33, in make_image
        pipeline_output = pipeline.image_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 301, in image_from_embeddings
        result_latents, result_attention_map_saver = self.latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 330, in latents_from_embeddings
        result: PipelineIntermediateState = infer_latents_from_embeddings(
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 185, in __call__
        for result in self.generator_method(*args, **kwargs):
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 367, in generate_latents_from_embeddings
        step_output = self.step(batched_t, latents, guidance_scale,
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
      File "/data/lstein/InvokeAI/ldm/invoke/generator/diffusers_pipeline.py", line 409, in step
        step_output = self.scheduler.step(noise_pred, timestep, latents, **extra_step_kwargs)
      File "/home/lstein/invokeai/.venv/lib/python3.9/site-packages/diffusers/schedulers/scheduling_lms_discrete.py", line 223, in step
        pred_original_sample = sample - sigma * model_output
    RuntimeError: The size of tensor a (9) must match the size of tensor b (4) at non-singleton dimension 1
```

* proper support for float32/float16

- configure script now correctly detects user's preference for
  fp16/32 and downloads the correct diffuser version. If fp16
  version not available, falls back to fp32 version.

- misc code cleanup and simplification in model_cache

* add on-the-fly conversion of .ckpt to diffusers models

1. On-the-fly conversion code can be found in the file ldm/invoke/ckpt_to_diffusers.py.

2. A new !optimize command has been added to the CLI. Should be ported to Web GUI.

User experience on the CLI is this:

```
invoke> !optimize /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
INFO: Converting legacy weights file /home/lstein/invokeai/models/ldm/stable-diffusion-v1/sd-v1-4.ckpt to optimized diffuser model.
      This operation will take 30-60s to complete.
Success. Optimized model is now located at /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
Writing new config file entry for sd-v1-4...

>> New configuration:
sd-v1-4:
  description: Optimized version of sd-v1-4
  format: diffusers
  path: /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4

OK to import [n]? y
>> Verifying that new model loads...
>> Current VRAM usage:  2.60G
>> Offloading stable-diffusion-2.1 to CPU
>> Loading diffusers model from /home/lstein/tmp/invokeai/models/optimized-ckpts/sd-v1-4
  | Using faster float16 precision
You have disabled the safety checker for <class 'ldm.invoke.generator.diffusers_pipeline.StableDiffusionGeneratorPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion \
license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances,\
 disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .
  | training width x height = (512 x 512)
>> Model loaded in 3.48s
>> Max VRAM used to load the model: 2.17G
>> Current VRAM usage:2.17G
>> Textual inversions available:
>> Setting Sampler to k_lms (LMSDiscreteScheduler)
Keep model loaded? [y]
```

* add parallel set of generator files for ckpt legacy generation

* generation using legacy ckpt models now working

* diffusers: fix missing attention_maps_callback

fix for 23eb80b404

* associate legacy CrossAttention with .ckpt models

* enable autoconvert

New --autoconvert CLI option will scan a designated directory for
new .ckpt files, convert them into diffuser models, and import
them into models.yaml.

Works like this:

   invoke.py --autoconvert /path/to/weights/directory

In ModelCache added two new methods:

  autoconvert_weights(config_path, weights_directory_path, models_directory_path)
  convert_and_import(ckpt_path, diffuser_path)

* diffusers: update to diffusers 0.11 (from 0.10.2)

* fix vae loading & width/height calculation

* refactor: encapsulate these conditioning data into one container

* diffusers: fix some noise-scaling issues by pushing the noise-mixing down to the common function

* add support for safetensors and accelerate

* set local_files_only when internet unreachable

* diffusers: fix error-handling path when model repo has no fp16 branch

* fix generatorinpaint error

Fixes :
  "ModuleNotFoundError: No module named 'ldm.invoke.generatorinpaint'
   https://github.com/invoke-ai/InvokeAI/pull/1583#issuecomment-1363634318

* quench diffuser safety-checker warning

* diffusers: support stochastic DDIM eta parameter

* fix conda env creation on macos

* fix cross-attention with diffusers 0.11

* diffusers: the VAE needs to be tiling as well as the U-Net

* diffusers: comment on subfolders

* diffusers: embiggen!

* diffusers: make model_cache.list_models serializable

* diffusers(inpaint): restore scaling functionality

* fix requirements clash between numba and numpy 1.24

* diffusers: allow inpainting model to do non-inpainting tasks

* start expanding model_cache functionality

* add import_ckpt_model() and import_diffuser_model() methods to model_manager

- in addition, model_cache.py is now renamed to model_manager.py

* allow "recommended" flag to be optional in INITIAL_MODELS.yaml

* configure_invokeai now downloads VAE diffusers in advance

* rename ModelCache to ModelManager

* remove support for `repo_name` in models.yaml

* check for and refuse to load embeddings trained on incompatible models

* models.yaml.example: s/repo_name/repo_id

and remove extra INITIAL_MODELS now that the main one has diffusers models in it.

* add MVP textual inversion script

* refactor(InvokeAIDiffuserComponent): factor out _combine()

* InvokeAIDiffuserComponent: implement threshold

* InvokeAIDiffuserComponent: diagnostic logs for threshold

...this does not look right

* add a curses-based frontend to textual inversion

- not quite working yet
- requires npyscreen installed
- on windows will also have the windows-curses requirement, but not added
  to requirements yet

* add curses-based interface for textual inversion

* fix crash in convert_and_import()

- This corrects a "local variable referenced before assignment" error
  in model_manager.convert_and_import()

* potential workaround for no 'state_dict' key error

- As reported in https://github.com/huggingface/diffusers/issues/1876

* create TI output dir if needed

* Update environment-lin-cuda.yml (#2159)

Fixing line 42 to be the proper order to define the transformers requirement: ~= instead of =~

* diffusers: update sampler-to-scheduler mapping

based on https://github.com/huggingface/diffusers/issues/277#issuecomment-1371428672

* improve user exp for ckt to diffusers conversion

- !optimize_models command now operates on an existing ckpt file entry in models.yaml
- replaces existing entry, rather than adding a new one
- offers to delete the ckpt file after conversion

* web: adapt progress callback to deal with old generator or new diffusers pipeline

* clean-up model_manager code

- add_model() verified to work for .ckpt local paths,
  .ckpt remote URLs, diffusers local paths, and
  diffusers repo_ids

- convert_and_import() verified to work for local and
  remove .ckpt files

* handle edge cases for import_model() and convert_model()

* add support for safetensor .ckpt files

* fix name error

* code cleanup with pyflake

* improve model setting behavior

- If the user enters an invalid model name at startup time, will not
  try to load it, warn, and use default model
- CLI UI enhancement: include currently active model in the command
  line prompt.

* update test-invoke-pip.yml
- fix model cache path to point to runwayml/stable-diffusion-v1-5
- remove `skip-sd-weights` from configure_invokeai.py args

* exclude dev/diffusers from "fail for draft PRs"

* disable "fail on PR jobs"

* re-add `--skip-sd-weights` since no space

* update workflow environments
- include `INVOKE_MODEL_RECONFIGURE: '--yes'`

* clean up model load failure handling

- Allow CLI to run even when no model is defined or loadable.
- Inhibit stack trace when model load fails - only show last error
- Give user *option* to run configure_invokeai.py when no models
  successfully load.
- Restart invokeai after reconfiguration.

* further edge-case handling

1) only one model in models.yaml file, and that model is broken
2) no models in models.yaml
3) models.yaml doesn't exist at all

* fix incorrect model status listing

- "cached" was not being returned from list_models()
- normalize handling of exceptions during model loading:
   - Passing an invalid model name to generate.set_model() will return
     a KeyError
   - All other exceptions are returned as the appropriate Exception

* CI: do download weights (if not already cached)

* diffusers: fix scheduler loading in offline mode

* CI: fix model name (no longer has `diffusers-` prefix)

* Update txt2img2img.py (#2256)

* fixes to share models with HuggingFace cache system

- If HF_HOME environment variable is defined, then all huggingface models
  are stored in that directory following the standard conventions.
- For seamless interoperability, set HF_HOME to ~/.cache/huggingface
- If HF_HOME not defined, then models are stored in ~/invokeai/models.
  This is equivalent to setting HF_HOME to ~/invokeai/models

A future commit will add a migration mechanism so that this change doesn't
break previous installs.

* feat - make model storage compatible with hugging face caching system

This commit alters the InvokeAI model directory to be compatible with
hugging face, making it easier to share diffusers (and other models)
across different programs.

- If the HF_HOME environment variable is not set, then models are
  cached in ~/invokeai/models in a format that is identical to the
  HuggingFace cache.

- If HF_HOME is set, then models are cached wherever HF_HOME points.

- To enable sharing with other HuggingFace library clients, set
  HF_HOME to ~/.cache/huggingface to set the default cache location
  or to ~/invokeai/models to have huggingface cache inside InvokeAI.

* fixes to share models with HuggingFace cache system

    - If HF_HOME environment variable is defined, then all huggingface models
      are stored in that directory following the standard conventions.
    - For seamless interoperability, set HF_HOME to ~/.cache/huggingface
    - If HF_HOME not defined, then models are stored in ~/invokeai/models.
      This is equivalent to setting HF_HOME to ~/invokeai/models

    A future commit will add a migration mechanism so that this change doesn't
    break previous installs.

* fix error "no attribute CkptInpaint"

* model_manager.list_models() returns entire model config stanza+status

* Initial Draft - Model Manager Diffusers

* added hash function to diffusers

* implement sha256 hashes on diffusers models

* Add Model Manager Support for Diffusers

* fix various problems with model manager

- in cli import functions, fix not enough values to unpack from
  _get_name_and_desc()
- fix crash when using old-style vae: value with new-style diffuser

* rebuild frontend

* fix dictconfig-not-serializable issue

* fix NoneType' object is not subscriptable crash in model_manager

* fix "str has no attribute get" error in model_manager list_models()

* Add path and repo_id support for Diffusers Model Manager

Also fixes bugs

* Fix tooltip IT localization not working

* Add Version Number To WebUI

* Optimize Model Search

* Fix incorrect font on the Model Manager UI

* Fix image degradation on merge fixes - [Experimental]

This change should effectively fix a couple of things.

- Fix image degradation on subsequent merges of the canvas layers.
- Fix the slight transparent border that is left behind when filling the bounding box with a color.
- Fix the left over line of color when filling a bounding box with color.

So far there are no side effects for this. If any, please report.

* Add local model filtering for Diffusers / Checkpoints

* Go to home on modal close for the Add Modal UI

* Styling Fixes

* Model Manager Diffusers Localization Update

* Add Safe Tensor scanning to Model Manager

* Fix model edit form dispatching string values instead of numbers.

* Resolve VAE handling / edge cases for supplied repos

* defer injecting tokens for textual inversions until they're used for the first time

* squash a console warning

* implement model migration check

* add_model() overwrites previous config rather than merges

* fix model config file attribute merging

* fix precision handling in textual inversion script

* allow ckpt conversion script to work with safetensors .ckpts

Applied patch here:
beb932c5d1

* fix name "args" is not defined crash in textual_inversion_training

* fix a second NameError: name 'args' is not defined crash

* fix loading of the safety checker from the global cache dir

* add installation step to textual inversion frontend

- After a successful training run, the script will copy learned_embeds.bin
  to a subfolder of the embeddings directory.
- User given the option to delete the logs and intermediate checkpoints
  (which together use 7-8G of space)
- If textual inversion training fails, reports the error gracefully.

* don't crash out on incompatible embeddings

- put try: blocks around places where the system tries to load an embedding
  which is incompatible with the currently loaded model

* add support for checkpoint resuming

* textual inversion preferences are saved and restored between sessions

- Preferences are stored in a file named text-inversion-training/preferences.conf
- Currently the resume-from-checkpoint option is not working correctly. Possible
  bug in textual_inversion_training.py?

* copy learned_embeddings.bin into right location

* add front end for diffusers model merging

- Front end doesn't do anything yet!!!!
- Made change to model name parsing in CLI to support ability to have merged models
  with the "+" character in their names.

* improve inpainting experience

- recommend ckpt version of inpainting-1.5 to user
- fix get_noise() bug in ckpt version of omnibus.py

* update environment*yml

* tweak instructions to install HuggingFace token

* bump version number

* enhance update scripts

- update scripts will now fetch new INITIAL_MODELS.yaml so that
  configure_invokeai.py will know about the diffusers versions.

* enhance invoke.sh/invoke.bat launchers

- added configure_invokeai.py to menu
- menu defaults to browser-based invoke

* remove conda workflow (#2321)

* fix `token_ids has shape torch.Size([79]) - expected [77]`

* update CHANGELOG.md with 2.3.* info

- Add information on how formats have changed and the upgrade process.
- Add short bug list.

Co-authored-by: Damian Stewart <d@damianstewart.com>
Co-authored-by: Damian Stewart <null@damianstewart.com>
Co-authored-by: Lincoln Stein <lincoln.stein@gmail.com>
Co-authored-by: Wybartel-luxmc <37852506+Wybartel-luxmc@users.noreply.github.com>
Co-authored-by: mauwii <Mauwii@outlook.de>
Co-authored-by: mickr777 <115216705+mickr777@users.noreply.github.com>
Co-authored-by: blessedcoolant <54517381+blessedcoolant@users.noreply.github.com>
Co-authored-by: Eugene Brodsky <ebr@users.noreply.github.com>
Co-authored-by: Matthias Wild <40327258+mauwii@users.noreply.github.com>
2023-01-15 09:22:46 -05:00

1126 lines
41 KiB
Python

import os
import re
import sys
import shlex
import traceback
from ldm.invoke.globals import Globals
from ldm.generate import Generate
from ldm.invoke.prompt_parser import PromptParser
from ldm.invoke.readline import get_completer, Completer
from ldm.invoke.args import Args, metadata_dumps, metadata_from_png, dream_cmd_from_png
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata, write_metadata
from ldm.invoke.image_util import make_grid
from ldm.invoke.log import write_log
from ldm.invoke.model_manager import ModelManager
from pathlib import Path
from argparse import Namespace
import pyparsing
import ldm.invoke
# global used in multiple functions (fix)
infile = None
def main():
"""Initialize command-line parsers and the diffusion model"""
global infile
opt = Args()
args = opt.parse_args()
if not args:
sys.exit(-1)
if args.laion400m:
print('--laion400m flag has been deprecated. Please use --model laion400m instead.')
sys.exit(-1)
if args.weights:
print('--weights argument has been deprecated. Please edit ./configs/models.yaml, and select the weights using --model instead.')
sys.exit(-1)
if args.max_loaded_models is not None:
if args.max_loaded_models <= 0:
print('--max_loaded_models must be >= 1; using 1')
args.max_loaded_models = 1
# alert - setting a global here
Globals.try_patchmatch = args.patchmatch
Globals.always_use_cpu = args.always_use_cpu
Globals.internet_available = args.internet_available and check_internet()
print(f'>> Internet connectivity is {Globals.internet_available}')
if not args.conf:
if not os.path.exists(os.path.join(Globals.root,'configs','models.yaml')):
print(f"\n** Error. The file {os.path.join(Globals.root,'configs','models.yaml')} could not be found.")
print('** Please check the location of your invokeai directory and use the --root_dir option to point to the correct path.')
print('** This script will now exit.')
sys.exit(-1)
print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}')
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# loading here to avoid long delays on startup
from ldm.generate import Generate
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan,codeformer,esrgan = load_face_restoration(opt)
# normalize the config directory relative to root
if not os.path.isabs(opt.conf):
opt.conf = os.path.normpath(os.path.join(Globals.root,opt.conf))
if opt.embeddings:
if not os.path.isabs(opt.embedding_path):
embedding_path = os.path.normpath(os.path.join(Globals.root,opt.embedding_path))
else:
embedding_path = opt.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# load the infile as a list of lines
if opt.infile:
try:
if os.path.isfile(opt.infile):
infile = open(opt.infile, 'r', encoding='utf-8')
elif opt.infile == '-': # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f'{opt.infile} not found.')
except (FileNotFoundError, IOError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
# creating a Generate object:
try:
gen = Generate(
conf = opt.conf,
model = opt.model,
sampler_name = opt.sampler_name,
embedding_path = embedding_path,
full_precision = opt.full_precision,
precision = opt.precision,
gfpgan=gfpgan,
codeformer=codeformer,
esrgan=esrgan,
free_gpu_mem=opt.free_gpu_mem,
safety_checker=opt.safety_checker,
max_loaded_models=opt.max_loaded_models,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt,e)
except (IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
if opt.seamless:
print(">> changed to seamless tiling mode")
# preload the model
try:
gen.load_model()
except KeyError as e:
pass
except Exception as e:
report_model_error(opt, e)
# try to autoconvert new models
# autoimport new .ckpt files
if path := opt.autoconvert:
gen.model_manager.autoconvert_weights(
conf_path=opt.conf,
weights_directory=path,
)
# web server loops forever
if opt.web or opt.gui:
invoke_ai_web_server_loop(gen, gfpgan, codeformer, esrgan)
sys.exit(0)
if not infile:
print(
"\n* Initialization done! Awaiting your command (-h for help, 'q' to quit)"
)
try:
main_loop(gen, opt)
except KeyboardInterrupt:
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
except Exception:
print(">> An error occurred:")
traceback.print_exc()
# TODO: main_loop() has gotten busy. Needs to be refactored.
def main_loop(gen, opt):
"""prompt/read/execute loop"""
global infile
done = False
doneAfterInFile = infile is not None
path_filter = re.compile(r'[<>:"/\\|?*]')
last_results = list()
# The readline completer reads history from the .dream_history file located in the
# output directory specified at the time of script launch. We do not currently support
# changing the history file midstream when the output directory is changed.
completer = get_completer(opt, models=gen.model_manager.list_models())
set_default_output_dir(opt, completer)
if gen.model:
add_embedding_terms(gen, completer)
output_cntr = completer.get_current_history_length()+1
# os.pathconf is not available on Windows
if hasattr(os, 'pathconf'):
path_max = os.pathconf(opt.outdir, 'PC_PATH_MAX')
name_max = os.pathconf(opt.outdir, 'PC_NAME_MAX')
else:
path_max = 260
name_max = 255
while not done:
operation = 'generate'
try:
command = get_next_command(infile, gen.model_name)
except EOFError:
done = infile is None or doneAfterInFile
infile = None
continue
# skip empty lines
if not command.strip():
continue
if command.startswith(('#', '//')):
continue
if len(command.strip()) == 1 and command.startswith('q'):
done = True
break
if not command.startswith('!history'):
completer.add_history(command)
if command.startswith('!'):
command, operation = do_command(command, gen, opt, completer)
if operation is None:
continue
if opt.parse_cmd(command) is None:
continue
if opt.init_img:
try:
if not opt.prompt:
oldargs = metadata_from_png(opt.init_img)
opt.prompt = oldargs.prompt
print(f'>> Retrieved old prompt "{opt.prompt}" from {opt.init_img}')
except (OSError, AttributeError, KeyError):
pass
if len(opt.prompt) == 0:
opt.prompt = ''
# width and height are set by model if not specified
if not opt.width:
opt.width = gen.width
if not opt.height:
opt.height = gen.height
# retrieve previous value of init image if requested
if opt.init_img is not None and re.match('^-\\d+$', opt.init_img):
try:
opt.init_img = last_results[int(opt.init_img)][0]
print(f'>> Reusing previous image {opt.init_img}')
except IndexError:
print(
f'>> No previous initial image at position {opt.init_img} found')
opt.init_img = None
continue
# the outdir can change with each command, so we adjust it here
set_default_output_dir(opt,completer)
# try to relativize pathnames
for attr in ('init_img','init_mask','init_color'):
if getattr(opt,attr) and not os.path.exists(getattr(opt,attr)):
basename = getattr(opt,attr)
path = os.path.join(opt.outdir,basename)
setattr(opt,attr,path)
# retrieve previous value of seed if requested
# Exception: for postprocess operations negative seed values
# mean "discard the original seed and generate a new one"
# (this is a non-obvious hack and needs to be reworked)
if opt.seed is not None and opt.seed < 0 and operation != 'postprocess':
try:
opt.seed = last_results[opt.seed][1]
print(f'>> Reusing previous seed {opt.seed}')
except IndexError:
print(f'>> No previous seed at position {opt.seed} found')
opt.seed = None
continue
if opt.strength is None:
opt.strength = 0.75 if opt.out_direction is None else 0.83
if opt.with_variations is not None:
opt.with_variations = split_variations(opt.with_variations)
if opt.prompt_as_dir and operation == 'generate':
# sanitize the prompt to a valid folder name
subdir = path_filter.sub('_', opt.prompt)[:name_max].rstrip(' .')
# truncate path to maximum allowed length
# 39 is the length of '######.##########.##########-##.png', plus two separators and a NUL
subdir = subdir[:(path_max - 39 - len(os.path.abspath(opt.outdir)))]
current_outdir = os.path.join(opt.outdir, subdir)
print('Writing files to directory: "' + current_outdir + '"')
# make sure the output directory exists
if not os.path.exists(current_outdir):
os.makedirs(current_outdir)
else:
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
current_outdir = opt.outdir
# Here is where the images are actually generated!
last_results = []
try:
file_writer = PngWriter(current_outdir)
results = [] # list of filename, prompt pairs
grid_images = dict() # seed -> Image, only used if `opt.grid`
prior_variations = opt.with_variations or []
prefix = file_writer.unique_prefix()
step_callback = make_step_callback(gen, opt, prefix) if opt.save_intermediates > 0 else None
def image_writer(image, seed, upscaled=False, first_seed=None, use_prefix=None, prompt_in=None, attention_maps_image=None):
# note the seed is the seed of the current image
# the first_seed is the original seed that noise is added to
# when the -v switch is used to generate variations
nonlocal prior_variations
nonlocal prefix
path = None
if opt.grid:
grid_images[seed] = image
elif operation == 'mask':
filename = f'{prefix}.{use_prefix}.{seed}.png'
tm = opt.text_mask[0]
th = opt.text_mask[1] if len(opt.text_mask)>1 else 0.5
formatted_dream_prompt = f'!mask {opt.input_file_path} -tm {tm} {th}'
path = file_writer.save_image_and_prompt_to_png(
image = image,
dream_prompt = formatted_dream_prompt,
metadata = {},
name = filename,
compress_level = opt.png_compression,
)
results.append([path, formatted_dream_prompt])
else:
if use_prefix is not None:
prefix = use_prefix
postprocessed = upscaled if upscaled else operation=='postprocess'
opt.prompt = gen.huggingface_concepts_library.replace_triggers_with_concepts(opt.prompt or prompt_in) # to avoid the problem of non-unique concept triggers
filename, formatted_dream_prompt = prepare_image_metadata(
opt,
prefix,
seed,
operation,
prior_variations,
postprocessed,
first_seed
)
path = file_writer.save_image_and_prompt_to_png(
image = image,
dream_prompt = formatted_dream_prompt,
metadata = metadata_dumps(
opt,
seeds = [seed if opt.variation_amount==0 and len(prior_variations)==0 else first_seed],
model_hash = gen.model_hash,
),
name = filename,
compress_level = opt.png_compression,
)
# update rfc metadata
if operation == 'postprocess':
tool = re.match('postprocess:(\w+)',opt.last_operation).groups()[0]
add_postprocessing_to_metadata(
opt,
opt.input_file_path,
filename,
tool,
formatted_dream_prompt,
)
if (not postprocessed) or opt.save_original:
# only append to results if we didn't overwrite an earlier output
results.append([path, formatted_dream_prompt])
# so that the seed autocompletes (on linux|mac when -S or --seed specified
if completer and operation == 'generate':
completer.add_seed(seed)
completer.add_seed(first_seed)
last_results.append([path, seed])
if operation == 'generate':
catch_ctrl_c = infile is None # if running interactively, we catch keyboard interrupts
opt.last_operation='generate'
try:
gen.prompt2image(
image_callback=image_writer,
step_callback=step_callback,
catch_interrupts=catch_ctrl_c,
**vars(opt)
)
except (PromptParser.ParsingException, pyparsing.ParseException) as e:
print('** An error occurred while processing your prompt **')
print(f'** {str(e)} **')
elif operation == 'postprocess':
print(f'>> fixing {opt.prompt}')
opt.last_operation = do_postprocess(gen,opt,image_writer)
elif operation == 'mask':
print(f'>> generating masks from {opt.prompt}')
do_textmask(gen, opt, image_writer)
if opt.grid and len(grid_images) > 0:
grid_img = make_grid(list(grid_images.values()))
grid_seeds = list(grid_images.keys())
first_seed = last_results[0][1]
filename = f'{prefix}.{first_seed}.png'
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed,grid=True,iterations=len(grid_images))
formatted_dream_prompt += f' # {grid_seeds}'
metadata = metadata_dumps(
opt,
seeds = grid_seeds,
model_hash = gen.model_hash
)
path = file_writer.save_image_and_prompt_to_png(
image = grid_img,
dream_prompt = formatted_dream_prompt,
metadata = metadata,
name = filename
)
results = [[path, formatted_dream_prompt]]
except AssertionError as e:
print(e)
continue
except OSError as e:
print(e)
continue
print('Outputs:')
log_path = os.path.join(current_outdir, 'invoke_log')
output_cntr = write_log(results, log_path ,('txt', 'md'), output_cntr)
print()
print(f'\nGoodbye!\nYou can start InvokeAI again by running the "invoke.bat" (or "invoke.sh") script from {Globals.root}')
# TO DO: remove repetitive code and the awkward command.replace() trope
# Just do a simple parse of the command!
def do_command(command:str, gen, opt:Args, completer) -> tuple:
global infile
operation = 'generate' # default operation, alternative is 'postprocess'
if command.startswith('!dream'): # in case a stored prompt still contains the !dream command
command = command.replace('!dream ','',1)
elif command.startswith('!fix'):
command = command.replace('!fix ','',1)
operation = 'postprocess'
elif command.startswith('!mask'):
command = command.replace('!mask ','',1)
operation = 'mask'
elif command.startswith('!switch'):
model_name = command.replace('!switch ','',1)
try:
gen.set_model(model_name)
add_embedding_terms(gen, completer)
except KeyError as e:
print(str(e))
except Exception as e:
report_model_error(opt,e)
completer.add_history(command)
operation = None
elif command.startswith('!models'):
gen.model_manager.print_models()
completer.add_history(command)
operation = None
elif command.startswith('!import'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide (1) a URL to a .ckpt file to import; (2) a local path to a .ckpt file; or (3) a diffusers repository id in the form stabilityai/stable-diffusion-2-1')
else:
import_model(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!convert'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the path to a .ckpt or .safetensors model')
elif not os.path.exists(path[1]):
print(f'** {path[1]}: model not found')
else:
optimize_model(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!optimize'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide an installed model name')
elif not path[1] in gen.model_manager.list_models():
print(f'** {path[1]}: model not found')
else:
optimize_model(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!edit'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the name of a model')
else:
edit_model(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!del'):
path = shlex.split(command)
if len(path) < 2:
print('** please provide the name of a model')
else:
del_config(path[1], gen, opt, completer)
completer.add_history(command)
operation = None
elif command.startswith('!fetch'):
file_path = command.replace('!fetch','',1).strip()
retrieve_dream_command(opt,file_path,completer)
completer.add_history(command)
operation = None
elif command.startswith('!replay'):
file_path = command.replace('!replay','',1).strip()
if infile is None and os.path.isfile(file_path):
infile = open(file_path, 'r', encoding='utf-8')
completer.add_history(command)
operation = None
elif command.startswith('!history'):
completer.show_history()
operation = None
elif command.startswith('!search'):
search_str = command.replace('!search','',1).strip()
completer.show_history(search_str)
operation = None
elif command.startswith('!clear'):
completer.clear_history()
operation = None
elif re.match('^!(\d+)',command):
command_no = re.match('^!(\d+)',command).groups()[0]
command = completer.get_line(int(command_no))
completer.set_line(command)
operation = None
else: # not a recognized command, so give the --help text
command = '-h'
return command, operation
def set_default_output_dir(opt:Args, completer:Completer):
'''
If opt.outdir is relative, we add the root directory to it
normalize the outdir relative to root and make sure it exists.
'''
if not os.path.isabs(opt.outdir):
opt.outdir=os.path.normpath(os.path.join(Globals.root,opt.outdir))
if not os.path.exists(opt.outdir):
os.makedirs(opt.outdir)
completer.set_default_dir(opt.outdir)
def import_model(model_path:str, gen, opt, completer):
'''
model_path can be (1) a URL to a .ckpt file; (2) a local .ckpt file path; or
(3) a huggingface repository id
'''
model_name = None
if model_path.startswith(('http:','https:','ftp:')):
model_name = import_ckpt_model(model_path, gen, opt, completer)
elif os.path.exists(model_path) and model_path.endswith('.ckpt') and os.path.isfile(model_path):
model_name = import_ckpt_model(model_path, gen, opt, completer)
elif re.match('^[\w.+-]+/[\w.+-]+$',model_path):
model_name = import_diffuser_model(model_path, gen, opt, completer)
elif os.path.isdir(model_path):
model_name = import_diffuser_model(model_path, gen, opt, completer)
else:
print(f'** {model_path} is neither the path to a .ckpt file nor a diffusers repository id. Can\'t import.')
if not model_name:
return
if not _verify_load(model_name, gen):
print('** model failed to load. Discarding configuration entry')
gen.model_manager.del_model(model_name)
return
if input('Make this the default model? [n] ') in ('y','Y'):
gen.model_manager.set_default_model(model_name)
gen.model_manager.commit(opt.conf)
completer.update_models(gen.model_manager.list_models())
print(f'>> {model_name} successfully installed')
def import_diffuser_model(path_or_repo:str, gen, opt, completer)->str:
manager = gen.model_manager
default_name = Path(path_or_repo).stem
default_description = f'Imported model {default_name}'
model_name, model_description = _get_model_name_and_desc(
manager,
completer,
model_name=default_name,
model_description=default_description
)
if not manager.import_diffuser_model(
path_or_repo,
model_name = model_name,
description = model_description):
print('** model failed to import')
return None
if input('Make this the default model? [n] ').startswith(('y','Y')):
manager.set_default_model(model_name)
return model_name
def import_ckpt_model(path_or_url:str, gen, opt, completer)->str:
manager = gen.model_manager
default_name = Path(path_or_url).stem
default_description = f'Imported model {default_name}'
model_name, model_description = _get_model_name_and_desc(
manager,
completer,
model_name=default_name,
model_description=default_description
)
config_file = None
completer.complete_extensions(('.yaml','.yml'))
completer.set_line('configs/stable-diffusion/v1-inference.yaml')
done = False
while not done:
config_file = input('Configuration file for this model: ').strip()
done = os.path.exists(config_file)
completer.complete_extensions(None)
if not manager.import_ckpt_model(
path_or_url,
config = config_file,
model_name = model_name,
model_description = model_description,
commit_to_conf = opt.conf,
):
print('** model failed to import')
return None
if input('Make this the default model? [n] ').startswith(('y','Y')):
manager.set_model_default(model_name)
return model_name
def _verify_load(model_name:str, gen)->bool:
print('>> Verifying that new model loads...')
current_model = gen.model_name
if not gen.model_manager.get_model(model_name):
return False
do_switch = input('Keep model loaded? [y] ')
if len(do_switch)==0 or do_switch[0] in ('y','Y'):
gen.set_model(model_name)
else:
print('>> Restoring previous model')
gen.set_model(current_model)
return True
def _get_model_name_and_desc(model_manager,completer,model_name:str='',model_description:str=''):
model_name = _get_model_name(model_manager.list_models(),completer,model_name)
completer.set_line(model_description)
model_description = input(f'Description for this model [{model_description}]: ').strip() or model_description
return model_name, model_description
def optimize_model(model_name_or_path:str, gen, opt, completer):
manager = gen.model_manager
ckpt_path = None
if (model_info := manager.model_info(model_name_or_path)):
if 'weights' in model_info:
ckpt_path = Path(model_info['weights'])
model_name = model_name_or_path
model_description = model_info['description']
else:
print(f'** {model_name_or_path} is not a legacy .ckpt weights file')
return
elif os.path.exists(model_name_or_path):
ckpt_path = Path(model_name_or_path)
model_name,model_description = _get_model_name_and_desc(
manager,
completer,
ckpt_path.stem,
f'Converted model {ckpt_path.stem}'
)
else:
print(f'** {model_name_or_path} is neither an existing model nor the path to a .ckpt file')
return
if not ckpt_path.is_absolute():
ckpt_path = Path(Globals.root,ckpt_path)
diffuser_path = Path(Globals.root, 'models','optimized-ckpts',model_name)
if diffuser_path.exists():
print(f'** {model_name_or_path} is already optimized. Will not overwrite. If this is an error, please remove the directory {diffuser_path} and try again.')
return
new_config = gen.model_manager.convert_and_import(
ckpt_path,
diffuser_path,
model_name=model_name,
model_description=model_description,
commit_to_conf=opt.conf,
)
if not new_config:
return
completer.update_models(gen.model_manager.list_models())
if input(f'Load optimized model {model_name}? [y] ') not in ('n','N'):
gen.set_model(model_name)
response = input(f'Delete the original .ckpt file at ({ckpt_path} ? [n] ')
if response.startswith(('y','Y')):
ckpt_path.unlink(missing_ok=True)
print(f'{ckpt_path} deleted')
def del_config(model_name:str, gen, opt, completer):
current_model = gen.model_name
if model_name == current_model:
print("** Can't delete active model. !switch to another model first. **")
return
gen.model_manager.del_model(model_name)
gen.model_manager.commit(opt.conf)
print(f'** {model_name} deleted')
completer.update_models(gen.model_manager.list_models())
def edit_model(model_name:str, gen, opt, completer):
current_model = gen.model_name
# if model_name == current_model:
# print("** Can't edit the active model. !switch to another model first. **")
# return
manager = gen.model_manager
if not (info := manager.model_info(model_name)):
print(f'** Unknown model {model_name}')
return
print(f'\n>> Editing model {model_name} from configuration file {opt.conf}')
new_name = _get_model_name(manager.list_models(),completer,model_name)
for attribute in info.keys():
if type(info[attribute]) != str:
continue
if attribute == 'format':
continue
completer.set_line(info[attribute])
info[attribute] = input(f'{attribute}: ') or info[attribute]
if new_name != model_name:
manager.del_model(model_name)
# this does the update
manager.add_model(new_name, info, True)
if input('Make this the default model? [n] ').startswith(('y','Y')):
manager.set_default_model(new_name)
manager.commit(opt.conf)
completer.update_models(manager.list_models())
print('>> Model successfully updated')
def _get_model_name(existing_names,completer,default_name:str='')->str:
done = False
completer.set_line(default_name)
while not done:
model_name = input(f'Short name for this model [{default_name}]: ').strip()
if len(model_name)==0:
model_name = default_name
if not re.match('^[\w._+-]+$',model_name):
print('** model name must contain only words, digits and the characters "._+-" **')
elif model_name != default_name and model_name in existing_names:
print(f'** the name {model_name} is already in use. Pick another.')
else:
done = True
return model_name
def do_textmask(gen, opt, callback):
image_path = opt.prompt
if not os.path.exists(image_path):
image_path = os.path.join(opt.outdir,image_path)
assert os.path.exists(image_path), '** "{opt.prompt}" not found. Please enter the name of an existing image file to mask **'
assert opt.text_mask is not None and len(opt.text_mask) >= 1, '** Please provide a text mask with -tm **'
opt.input_file_path = image_path
tm = opt.text_mask[0]
threshold = float(opt.text_mask[1]) if len(opt.text_mask) > 1 else 0.5
gen.apply_textmask(
image_path = image_path,
prompt = tm,
threshold = threshold,
callback = callback,
)
def do_postprocess (gen, opt, callback):
file_path = opt.prompt # treat the prompt as the file pathname
if opt.new_prompt is not None:
opt.prompt = opt.new_prompt
else:
opt.prompt = None
if os.path.dirname(file_path) == '': #basename given
file_path = os.path.join(opt.outdir,file_path)
opt.input_file_path = file_path
tool=None
if opt.facetool_strength > 0:
tool = opt.facetool
elif opt.embiggen:
tool = 'embiggen'
elif opt.upscale:
tool = 'upscale'
elif opt.out_direction:
tool = 'outpaint'
elif opt.outcrop:
tool = 'outcrop'
opt.save_original = True # do not overwrite old image!
opt.last_operation = f'postprocess:{tool}'
try:
gen.apply_postprocessor(
image_path = file_path,
tool = tool,
facetool_strength = opt.facetool_strength,
codeformer_fidelity = opt.codeformer_fidelity,
save_original = opt.save_original,
upscale = opt.upscale,
out_direction = opt.out_direction,
outcrop = opt.outcrop,
callback = callback,
opt = opt,
)
except OSError:
print(traceback.format_exc(), file=sys.stderr)
print(f'** {file_path}: file could not be read')
return
except (KeyError, AttributeError):
print(traceback.format_exc(), file=sys.stderr)
return
return opt.last_operation
def add_postprocessing_to_metadata(opt,original_file,new_file,tool,command):
original_file = original_file if os.path.exists(original_file) else os.path.join(opt.outdir,original_file)
new_file = new_file if os.path.exists(new_file) else os.path.join(opt.outdir,new_file)
try:
meta = retrieve_metadata(original_file)['sd-metadata']
except AttributeError:
try:
meta = retrieve_metadata(new_file)['sd-metadata']
except AttributeError:
meta = {}
if 'image' not in meta:
meta = metadata_dumps(opt,seeds=[opt.seed])['image']
meta['image'] = {}
img_data = meta.get('image')
pp = img_data.get('postprocessing',[]) or []
pp.append(
{
'tool':tool,
'dream_command':command,
}
)
meta['image']['postprocessing'] = pp
write_metadata(new_file,meta)
def prepare_image_metadata(
opt,
prefix,
seed,
operation='generate',
prior_variations=[],
postprocessed=False,
first_seed=None
):
if postprocessed and opt.save_original:
filename = choose_postprocess_name(opt,prefix,seed)
else:
wildcards = dict(opt.__dict__)
wildcards['prefix'] = prefix
wildcards['seed'] = seed
try:
filename = opt.fnformat.format(**wildcards)
except KeyError as e:
print(f'** The filename format contains an unknown key \'{e.args[0]}\'. Will use \'{{prefix}}.{{seed}}.png\' instead')
filename = f'{prefix}.{seed}.png'
except IndexError:
print(f'** The filename format is broken or complete. Will use \'{{prefix}}.{{seed}}.png\' instead')
filename = f'{prefix}.{seed}.png'
if opt.variation_amount > 0:
first_seed = first_seed or seed
this_variation = [[seed, opt.variation_amount]]
opt.with_variations = prior_variations + this_variation
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
elif len(prior_variations) > 0:
formatted_dream_prompt = opt.dream_prompt_str(seed=first_seed)
elif operation == 'postprocess':
formatted_dream_prompt = '!fix '+opt.dream_prompt_str(seed=seed,prompt=opt.input_file_path)
else:
formatted_dream_prompt = opt.dream_prompt_str(seed=seed)
return filename,formatted_dream_prompt
def choose_postprocess_name(opt,prefix,seed) -> str:
match = re.search('postprocess:(\w+)',opt.last_operation)
if match:
modifier = match.group(1) # will look like "gfpgan", "upscale", "outpaint" or "embiggen"
else:
modifier = 'postprocessed'
counter = 0
filename = None
available = False
while not available:
if counter == 0:
filename = f'{prefix}.{seed}.{modifier}.png'
else:
filename = f'{prefix}.{seed}.{modifier}-{counter:02d}.png'
available = not os.path.exists(os.path.join(opt.outdir,filename))
counter += 1
return filename
def get_next_command(infile=None, model_name='no model') -> str: # command string
if infile is None:
command = input(f'({model_name}) invoke> ').strip()
else:
command = infile.readline()
if not command:
raise EOFError
else:
command = command.strip()
if len(command)>0:
print(f'#{command}')
return command
def invoke_ai_web_server_loop(gen: Generate, gfpgan, codeformer, esrgan):
print('\n* --web was specified, starting web server...')
from backend.invoke_ai_web_server import InvokeAIWebServer
# Change working directory to the stable-diffusion directory
os.chdir(
os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
)
invoke_ai_web_server = InvokeAIWebServer(generate=gen, gfpgan=gfpgan, codeformer=codeformer, esrgan=esrgan)
try:
invoke_ai_web_server.run()
except KeyboardInterrupt:
pass
def add_embedding_terms(gen,completer):
'''
Called after setting the model, updates the autocompleter with
any terms loaded by the embedding manager.
'''
trigger_strings = gen.model.textual_inversion_manager.get_all_trigger_strings()
completer.add_embedding_terms(trigger_strings)
def split_variations(variations_string) -> list:
# shotgun parsing, woo
parts = []
broken = False # python doesn't have labeled loops...
for part in variations_string.split(','):
seed_and_weight = part.split(':')
if len(seed_and_weight) != 2:
print(f'** Could not parse with_variation part "{part}"')
broken = True
break
try:
seed = int(seed_and_weight[0])
weight = float(seed_and_weight[1])
except ValueError:
print(f'** Could not parse with_variation part "{part}"')
broken = True
break
parts.append([seed, weight])
if broken:
return None
elif len(parts) == 0:
return None
else:
return parts
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
return gfpgan,codeformer,esrgan
def make_step_callback(gen, opt, prefix):
destination = os.path.join(opt.outdir,'intermediates',prefix)
os.makedirs(destination,exist_ok=True)
print(f'>> Intermediate images will be written into {destination}')
def callback(img, step):
if step % opt.save_intermediates == 0 or step == opt.steps-1:
filename = os.path.join(destination,f'{step:04}.png')
image = gen.sample_to_image(img)
image.save(filename,'PNG')
return callback
def retrieve_dream_command(opt,command,completer):
'''
Given a full or partial path to a previously-generated image file,
will retrieve and format the dream command used to generate the image,
and pop it into the readline buffer (linux, Mac), or print out a comment
for cut-and-paste (windows)
Given a wildcard path to a folder with image png files,
will retrieve and format the dream command used to generate the images,
and save them to a file commands.txt for further processing
'''
if len(command) == 0:
return
tokens = command.split()
dir,basename = os.path.split(tokens[0])
if len(dir) == 0:
path = os.path.join(opt.outdir,basename)
else:
path = tokens[0]
if len(tokens) > 1:
return write_commands(opt, path, tokens[1])
cmd = ''
try:
cmd = dream_cmd_from_png(path)
except OSError:
print(f'## {tokens[0]}: file could not be read')
except (KeyError, AttributeError, IndexError):
print(f'## {tokens[0]}: file has no metadata')
except:
print(f'## {tokens[0]}: file could not be processed')
if len(cmd)>0:
completer.set_line(cmd)
def write_commands(opt, file_path:str, outfilepath:str):
dir,basename = os.path.split(file_path)
try:
paths = sorted(list(Path(dir).glob(basename)))
except ValueError:
print(f'## "{basename}": unacceptable pattern')
return
commands = []
cmd = None
for path in paths:
try:
cmd = dream_cmd_from_png(path)
except (KeyError, AttributeError, IndexError):
print(f'## {path}: file has no metadata')
except:
print(f'## {path}: file could not be processed')
if cmd:
commands.append(f'# {path}')
commands.append(cmd)
if len(commands)>0:
dir,basename = os.path.split(outfilepath)
if len(dir)==0:
outfilepath = os.path.join(opt.outdir,basename)
with open(outfilepath, 'w', encoding='utf-8') as f:
f.write('\n'.join(commands))
print(f'>> File {outfilepath} with commands created')
def report_model_error(opt:Namespace, e:Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print('** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models.')
response = input('Do you want to run configure_invokeai.py to select and/or reinstall models? [y] ')
if response.startswith(('n','N')):
return
print('configure_invokeai is launching....\n')
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
yes_to_all = os.environ.get('INVOKE_MODEL_RECONFIGURE')
previous_args = sys.argv
sys.argv = [ 'configure_invokeai' ]
sys.argv.extend(root_dir)
sys.argv.extend(config)
if yes_to_all is not None:
sys.argv.append(yes_to_all)
import configure_invokeai
configure_invokeai.main()
print('** InvokeAI will now restart')
sys.argv = previous_args
main() # would rather do a os.exec(), but doesn't exist?
sys.exit(0)
def check_internet()->bool:
'''
Return true if the internet is reachable.
It does this by pinging huggingface.co.
'''
import urllib.request
host = 'http://huggingface.co'
try:
urllib.request.urlopen(host,timeout=1)
return True
except:
return False