InvokeAI/backend/invoke_ai_web_server.py
2022-11-27 03:35:49 +13:00

1474 lines
54 KiB
Python

import eventlet
import glob
import os
import shutil
import mimetypes
import traceback
import math
import io
import base64
import os
from werkzeug.utils import secure_filename
from flask import Flask, redirect, send_from_directory, flash, request, url_for, jsonify
from flask_socketio import SocketIO
from PIL import Image, ImageOps
from PIL.Image import Image as ImageType
from uuid import uuid4
from threading import Event
from ldm.invoke.args import Args, APP_ID, APP_VERSION, calculate_init_img_hash
from ldm.invoke.pngwriter import PngWriter, retrieve_metadata
from ldm.invoke.prompt_parser import split_weighted_subprompts
from backend.modules.parameters import parameters_to_command
from backend.modules.get_outpainting_generation_mode import (
get_outpainting_generation_mode,
)
# Loading Arguments
opt = Args()
args = opt.parse_args()
# Set the root directory for static files and relative paths
args.root_dir = os.path.expanduser(args.root_dir or '..')
if not os.path.isabs(args.outdir):
args.outdir=os.path.join(args.root_dir,args.outdir)
class InvokeAIWebServer:
def __init__(self, generate, gfpgan, codeformer, esrgan) -> None:
self.host = args.host
self.port = args.port
self.generate = generate
self.gfpgan = gfpgan
self.codeformer = codeformer
self.esrgan = esrgan
self.canceled = Event()
def run(self):
self.setup_app()
self.setup_flask()
def setup_flask(self):
# Fix missing mimetypes on Windows
mimetypes.add_type("application/javascript", ".js")
mimetypes.add_type("text/css", ".css")
# Socket IO
logger = True if args.web_verbose else False
engineio_logger = True if args.web_verbose else False
max_http_buffer_size = 10000000
socketio_args = {
"logger": logger,
"engineio_logger": engineio_logger,
"max_http_buffer_size": max_http_buffer_size,
"ping_interval": (50, 50),
"ping_timeout": 60,
}
if opt.cors:
socketio_args["cors_allowed_origins"] = opt.cors
self.app = Flask(
__name__, static_url_path="", static_folder=os.path.join(args.root_dir,"frontend/dist")
)
self.socketio = SocketIO(self.app, **socketio_args)
# Keep Server Alive Route
@self.app.route("/flaskwebgui-keep-server-alive")
def keep_alive():
return {"message": "Server Running"}
# Outputs Route
self.app.config["OUTPUTS_FOLDER"] = os.path.abspath(args.outdir)
@self.app.route("/outputs/<path:file_path>")
def outputs(file_path):
return send_from_directory(self.app.config["OUTPUTS_FOLDER"], file_path)
# Base Route
@self.app.route("/")
def serve():
if args.web_develop:
return redirect("http://127.0.0.1:5173")
else:
return send_from_directory(self.app.static_folder, "index.html")
@self.app.route("/upload", methods=["POST"])
def upload_base64_file():
try:
data = request.get_json()
dataURL = data["dataURL"]
name = data["name"]
print(f'>> Image upload requested "{name}"')
if dataURL is not None:
bytes = dataURL_to_bytes(dataURL)
file_path = self.save_file_unique_uuid_name(
bytes=bytes, name=name, path=self.result_path
)
mtime = os.path.getmtime(file_path)
(width, height) = Image.open(file_path).size
response = {
"url": self.get_url_from_image_path(file_path),
"mtime": mtime,
"width": width,
"height": height,
"category": "result",
"destination": "outpainting_merge",
}
return response
else:
return "No dataURL provided"
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
self.load_socketio_listeners(self.socketio)
if args.gui:
print(">> Launching Invoke AI GUI")
close_server_on_exit = True
if args.web_develop:
close_server_on_exit = False
try:
from flaskwebgui import FlaskUI
FlaskUI(
app=self.app,
socketio=self.socketio,
start_server="flask-socketio",
host=self.host,
port=self.port,
width=1600,
height=1000,
idle_interval=10,
close_server_on_exit=close_server_on_exit,
).run()
except KeyboardInterrupt:
import sys
sys.exit(0)
else:
print(">> Started Invoke AI Web Server!")
if self.host == "0.0.0.0":
print(
f"Point your browser at http://localhost:{self.port} or use the host's DNS name or IP address."
)
else:
print(
">> Default host address now 127.0.0.1 (localhost). Use --host 0.0.0.0 to bind any address."
)
print(f">> Point your browser at http://{self.host}:{self.port}")
self.socketio.run(app=self.app, host=self.host, port=self.port)
def setup_app(self):
self.result_url = "outputs/"
self.init_image_url = "outputs/init-images/"
self.mask_image_url = "outputs/mask-images/"
self.intermediate_url = "outputs/intermediates/"
# location for "finished" images
self.result_path = args.outdir
# temporary path for intermediates
self.intermediate_path = os.path.join(self.result_path, "intermediates/")
# path for user-uploaded init images and masks
self.init_image_path = os.path.join(self.result_path, "init-images/")
self.mask_image_path = os.path.join(self.result_path, "mask-images/")
# txt log
self.log_path = os.path.join(self.result_path, "invoke_log.txt")
# make all output paths
[
os.makedirs(path, exist_ok=True)
for path in [
self.result_path,
self.intermediate_path,
self.init_image_path,
self.mask_image_path,
]
]
def load_socketio_listeners(self, socketio):
@socketio.on("requestSystemConfig")
def handle_request_capabilities():
print(f">> System config requested")
config = self.get_system_config()
socketio.emit("systemConfig", config)
@socketio.on("requestModelChange")
def handle_set_model(model_name: str):
try:
print(f">> Model change requested: {model_name}")
model = self.generate.set_model(model_name)
model_list = self.generate.model_cache.list_models()
if model is None:
socketio.emit(
"modelChangeFailed",
{"model_name": model_name, "model_list": model_list},
)
else:
socketio.emit(
"modelChanged",
{"model_name": model_name, "model_list": model_list},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
@socketio.on("requestLatestImages")
def handle_request_latest_images(category, latest_mtime):
try:
base_path = (
self.result_path if category == "result" else self.init_image_path
)
paths = []
for ext in ("*.png", "*.jpg", "*.jpeg"):
paths.extend(glob.glob(os.path.join(base_path, ext)))
image_paths = sorted(
paths, key=lambda x: os.path.getmtime(x), reverse=True
)
image_paths = list(
filter(
lambda x: os.path.getmtime(x) > latest_mtime,
image_paths,
)
)
image_array = []
for path in image_paths:
if os.path.splitext(path)[1] == ".png":
metadata = retrieve_metadata(path)
sd_metadata = metadata["sd-metadata"]
else:
sd_metadata = {}
(width, height) = Image.open(path).size
image_array.append(
{
"url": self.get_url_from_image_path(path),
"mtime": os.path.getmtime(path),
"metadata": sd_metadata,
"width": width,
"height": height,
"category": category,
}
)
socketio.emit(
"galleryImages",
{"images": image_array, "category": category},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
@socketio.on("requestImages")
def handle_request_images(category, earliest_mtime=None):
try:
page_size = 50
base_path = (
self.result_path if category == "result" else self.init_image_path
)
paths = []
for ext in ("*.png", "*.jpg", "*.jpeg"):
paths.extend(glob.glob(os.path.join(base_path, ext)))
image_paths = sorted(
paths, key=lambda x: os.path.getmtime(x), reverse=True
)
if earliest_mtime:
image_paths = list(
filter(
lambda x: os.path.getmtime(x) < earliest_mtime,
image_paths,
)
)
areMoreImagesAvailable = len(image_paths) >= page_size
image_paths = image_paths[slice(0, page_size)]
image_array = []
for path in image_paths:
if os.path.splitext(path)[1] == ".png":
metadata = retrieve_metadata(path)
sd_metadata = metadata["sd-metadata"]
else:
sd_metadata = {}
(width, height) = Image.open(path).size
image_array.append(
{
"url": self.get_url_from_image_path(path),
"mtime": os.path.getmtime(path),
"metadata": sd_metadata,
"width": width,
"height": height,
"category": category,
}
)
socketio.emit(
"galleryImages",
{
"images": image_array,
"areMoreImagesAvailable": areMoreImagesAvailable,
"category": category,
},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
@socketio.on("generateImage")
def handle_generate_image_event(
generation_parameters, esrgan_parameters, facetool_parameters
):
try:
# truncate long init_mask/init_img base64 if needed
printable_parameters = {
**generation_parameters,
}
if "init_img" in generation_parameters:
printable_parameters["init_img"] = (
printable_parameters["init_img"][:64] + "..."
)
if "init_mask" in generation_parameters:
printable_parameters["init_mask"] = (
printable_parameters["init_mask"][:64] + "..."
)
print(
f">> Image generation requested: {printable_parameters}\nESRGAN parameters: {esrgan_parameters}\nFacetool parameters: {facetool_parameters}"
)
self.generate_images(
generation_parameters,
esrgan_parameters,
facetool_parameters,
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
@socketio.on("runPostprocessing")
def handle_run_postprocessing(original_image, postprocessing_parameters):
try:
print(
f'>> Postprocessing requested for "{original_image["url"]}": {postprocessing_parameters}'
)
progress = Progress()
socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
original_image_path = self.get_image_path_from_url(
original_image["url"]
)
image = Image.open(original_image_path)
seed = (
original_image["metadata"]["seed"]
if "metadata" in original_image
and "seed" in original_image["metadata"]
else "unknown_seed"
)
if postprocessing_parameters["type"] == "esrgan":
progress.set_current_status("Upscaling (ESRGAN)")
elif postprocessing_parameters["type"] == "gfpgan":
progress.set_current_status("Restoring Faces (GFPGAN)")
elif postprocessing_parameters["type"] == "codeformer":
progress.set_current_status("Restoring Faces (Codeformer)")
socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
if postprocessing_parameters["type"] == "esrgan":
image = self.esrgan.process(
image=image,
upsampler_scale=postprocessing_parameters["upscale"][0],
strength=postprocessing_parameters["upscale"][1],
seed=seed,
)
elif postprocessing_parameters["type"] == "gfpgan":
image = self.gfpgan.process(
image=image,
strength=postprocessing_parameters["facetool_strength"],
seed=seed,
)
elif postprocessing_parameters["type"] == "codeformer":
image = self.codeformer.process(
image=image,
strength=postprocessing_parameters["facetool_strength"],
fidelity=postprocessing_parameters["codeformer_fidelity"],
seed=seed,
device="cpu"
if str(self.generate.device) == "mps"
else self.generate.device,
)
else:
raise TypeError(
f'{postprocessing_parameters["type"]} is not a valid postprocessing type'
)
progress.set_current_status("Saving Image")
socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
postprocessing_parameters["seed"] = seed
metadata = self.parameters_to_post_processed_image_metadata(
parameters=postprocessing_parameters,
original_image_path=original_image_path,
)
command = parameters_to_command(postprocessing_parameters)
(width, height) = image.size
path = self.save_result_image(
image,
command,
metadata,
self.result_path,
postprocessing=postprocessing_parameters["type"],
)
self.write_log_message(
f'[Postprocessed] "{original_image_path}" > "{path}": {postprocessing_parameters}'
)
progress.mark_complete()
socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
socketio.emit(
"postprocessingResult",
{
"url": self.get_url_from_image_path(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
"width": width,
"height": height,
},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
@socketio.on("cancel")
def handle_cancel():
print(f">> Cancel processing requested")
self.canceled.set()
# TODO: I think this needs a safety mechanism.
@socketio.on("deleteImage")
def handle_delete_image(url, uuid, category):
try:
print(f'>> Delete requested "{url}"')
from send2trash import send2trash
path = self.get_image_path_from_url(url)
send2trash(path)
socketio.emit(
"imageDeleted",
{"url": url, "uuid": uuid, "category": category},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadImage")
def handle_upload_image(bytes, name, destination):
try:
print(f'>> Image upload requested "{name}"')
file_path = self.save_file_unique_uuid_name(
bytes=bytes, name=name, path=self.init_image_path
)
mtime = os.path.getmtime(file_path)
(width, height) = Image.open(file_path).size
socketio.emit(
"imageUploaded",
{
"url": self.get_url_from_image_path(file_path),
"mtime": mtime,
"width": width,
"height": height,
"category": "user",
"destination": destination,
},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
# TODO: I think this needs a safety mechanism.
@socketio.on("uploadOutpaintingMergeImage")
def handle_upload_outpainting_merge_image(dataURL, name):
try:
print(f'>> Outpainting merge image upload requested "{name}"')
image = dataURL_to_image(dataURL)
file_name = self.make_unique_init_image_filename(name)
file_path = os.path.join(self.result_path, file_name)
image.save(file_path)
socketio.emit(
"outpaintingMergeImageUploaded",
{
"url": self.get_url_from_image_path(file_path),
},
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
# App Functions
def get_system_config(self):
model_list = self.generate.model_cache.list_models()
return {
"model": "stable diffusion",
"model_id": args.model,
"model_hash": self.generate.model_hash,
"app_id": APP_ID,
"app_version": APP_VERSION,
"model_list": model_list,
}
def generate_images(
self, generation_parameters, esrgan_parameters, facetool_parameters
):
try:
self.canceled.clear()
step_index = 1
prior_variations = (
generation_parameters["with_variations"]
if "with_variations" in generation_parameters
else []
)
actual_generation_mode = generation_parameters["generation_mode"]
original_bounding_box = None
"""
TODO:
If a result image is used as an init image, and then deleted, we will want to be
able to use it as an init image in the future. Need to handle this case.
"""
"""
Prepare for generation based on generation_mode
"""
if generation_parameters["generation_mode"] == "outpainting":
"""
generation_parameters["init_img"] is a base64 image
generation_parameters["init_mask"] is a base64 image
So we need to convert each into a PIL Image.
"""
truncated_outpaint_image_b64 = generation_parameters["init_img"][:64]
truncated_outpaint_mask_b64 = generation_parameters["init_mask"][:64]
outpaint_image = dataURL_to_image(
generation_parameters["init_img"]
).convert("RGBA")
# Convert mask dataURL to an image and convert to greyscale
outpaint_mask = dataURL_to_image(
generation_parameters["init_mask"]
).convert("L")
actual_generation_mode = get_outpainting_generation_mode(
outpaint_image, outpaint_mask
)
"""
The outpaint image and mask are pre-cropped by the UI, so the bounding box we pass
to the generator should be:
{
"x": 0,
"y": 0,
"width": original_bounding_box["width"],
"height": original_bounding_box["height"]
}
Save the original bounding box, we need to give it back to the UI when finished,
because the UI needs to know where to put the inpainted image on the canvas.
"""
original_bounding_box = generation_parameters["bounding_box"].copy()
generation_parameters["bounding_box"]["x"] = 0
generation_parameters["bounding_box"]["y"] = 0
"""
Apply the mask to the init image, creating a "mask" image with
transparency where inpainting should occur. This is the kind of
mask that prompt2image() needs.
"""
alpha_mask = outpaint_image.copy()
alpha_mask.putalpha(outpaint_mask)
generation_parameters["init_img"] = outpaint_image
generation_parameters["init_mask"] = alpha_mask
# Remove the unneeded parameters for whichever mode we are doing
if actual_generation_mode == "inpainting":
generation_parameters.pop("seam_size", None)
generation_parameters.pop("seam_blur", None)
generation_parameters.pop("seam_strength", None)
generation_parameters.pop("seam_steps", None)
generation_parameters.pop("tile_size", None)
generation_parameters.pop("force_outpaint", None)
elif actual_generation_mode == "img2img":
generation_parameters["height"] = original_bounding_box["height"]
generation_parameters["width"] = original_bounding_box["width"]
generation_parameters.pop("init_mask", None)
generation_parameters.pop("seam_size", None)
generation_parameters.pop("seam_blur", None)
generation_parameters.pop("seam_strength", None)
generation_parameters.pop("seam_steps", None)
generation_parameters.pop("tile_size", None)
generation_parameters.pop("force_outpaint", None)
elif actual_generation_mode == "txt2img":
generation_parameters["height"] = original_bounding_box["height"]
generation_parameters["width"] = original_bounding_box["width"]
generation_parameters.pop("strength", None)
generation_parameters.pop("fit", None)
generation_parameters.pop("init_img", None)
generation_parameters.pop("init_mask", None)
generation_parameters.pop("seam_size", None)
generation_parameters.pop("seam_blur", None)
generation_parameters.pop("seam_strength", None)
generation_parameters.pop("seam_steps", None)
generation_parameters.pop("tile_size", None)
generation_parameters.pop("force_outpaint", None)
elif generation_parameters["generation_mode"] == "inpainting":
"""
generation_parameters["init_img"] is a url
generation_parameters["init_mask"] is a base64 image
So we need to convert each into a PIL Image.
"""
truncated_outpaint_image_b64 = generation_parameters["init_img"][:64]
truncated_outpaint_mask_b64 = generation_parameters["init_mask"][:64]
init_img_url = generation_parameters["init_img"]
init_mask_url = generation_parameters["init_mask"]
init_img_path = self.get_image_path_from_url(init_img_url)
original_image = Image.open(init_img_path)
rgba_image = original_image.convert("RGBA")
# copy a region from it which we will inpaint
cropped_init_image = copy_image_from_bounding_box(
rgba_image, **generation_parameters["bounding_box"]
)
original_bounding_box = generation_parameters["bounding_box"].copy()
generation_parameters["init_img"] = cropped_init_image
# Convert mask dataURL to an image and convert to greyscale
mask_image = dataURL_to_image(
generation_parameters["init_mask"]
).convert("L")
if generation_parameters.invert_mask:
mask_image = ImageOps.invert(mask_image)
"""
Apply the mask to the init image, creating a "mask" image with
transparency where inpainting should occur. This is the kind of
mask that prompt2image() needs.
"""
alpha_mask = cropped_init_image.copy()
alpha_mask.putalpha(mask_image)
generation_parameters["init_mask"] = alpha_mask
elif generation_parameters["generation_mode"] == "img2img":
init_img_url = generation_parameters["init_img"]
init_img_path = self.get_image_path_from_url(init_img_url)
generation_parameters["init_img"] = init_img_path
progress = Progress(generation_parameters=generation_parameters)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
def image_progress(sample, step):
if self.canceled.is_set():
raise CanceledException
nonlocal step_index
nonlocal generation_parameters
nonlocal progress
generation_messages = {
"txt2img": "Text to Image",
"img2img": "Image to Image",
"inpainting": "Inpainting",
"outpainting": "Outpainting",
}
progress.set_current_step(step + 1)
progress.set_current_status(
f"Generating ({generation_messages[actual_generation_mode]})"
)
progress.set_current_status_has_steps(True)
if (
generation_parameters["progress_images"]
and step % generation_parameters["save_intermediates"] == 0
and step < generation_parameters["steps"] - 1
):
image = self.generate.sample_to_image(sample)
metadata = self.parameters_to_generated_image_metadata(
generation_parameters
)
command = parameters_to_command(generation_parameters)
(width, height) = image.size
path = self.save_result_image(
image,
command,
metadata,
self.intermediate_path,
step_index=step_index,
postprocessing=False,
)
step_index += 1
self.socketio.emit(
"intermediateResult",
{
"url": self.get_url_from_image_path(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
"width": width,
"height": height,
"generationMode": generation_parameters["generation_mode"],
"boundingBox": original_bounding_box,
},
)
if generation_parameters["progress_latents"]:
image = self.generate.sample_to_lowres_estimated_image(sample)
(width, height) = image.size
width *= 8
height *= 8
buffered = io.BytesIO()
image.save(buffered, format="PNG")
img_base64 = "data:image/png;base64," + base64.b64encode(
buffered.getvalue()
).decode("UTF-8")
self.socketio.emit(
"intermediateResult",
{
"url": img_base64,
"isBase64": True,
"mtime": 0,
"metadata": {},
"width": width,
"height": height,
"generationMode": generation_parameters["generation_mode"],
"boundingBox": original_bounding_box,
},
)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
def image_done(image, seed, first_seed):
if self.canceled.is_set():
raise CanceledException
nonlocal generation_parameters
nonlocal esrgan_parameters
nonlocal facetool_parameters
nonlocal progress
step_index = 1
nonlocal prior_variations
"""
Tidy up after generation based on generation_mode
"""
# paste the inpainting image back onto the original
if generation_parameters["generation_mode"] == "inpainting":
image = paste_image_into_bounding_box(
Image.open(init_img_path),
image,
**generation_parameters["bounding_box"],
)
progress.set_current_status("Generation Complete")
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
all_parameters = generation_parameters
postprocessing = False
if (
"variation_amount" in all_parameters
and all_parameters["variation_amount"] > 0
):
first_seed = first_seed or seed
this_variation = [[seed, all_parameters["variation_amount"]]]
all_parameters["with_variations"] = (
prior_variations + this_variation
)
all_parameters["seed"] = first_seed
elif "with_variations" in all_parameters:
all_parameters["seed"] = first_seed
else:
all_parameters["seed"] = seed
if self.canceled.is_set():
raise CanceledException
if esrgan_parameters:
progress.set_current_status("Upscaling")
progress.set_current_status_has_steps(False)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
image = self.esrgan.process(
image=image,
upsampler_scale=esrgan_parameters["level"],
strength=esrgan_parameters["strength"],
seed=seed,
)
postprocessing = True
all_parameters["upscale"] = [
esrgan_parameters["level"],
esrgan_parameters["strength"],
]
if self.canceled.is_set():
raise CanceledException
if facetool_parameters:
if facetool_parameters["type"] == "gfpgan":
progress.set_current_status("Restoring Faces (GFPGAN)")
elif facetool_parameters["type"] == "codeformer":
progress.set_current_status("Restoring Faces (Codeformer)")
progress.set_current_status_has_steps(False)
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
if facetool_parameters["type"] == "gfpgan":
image = self.gfpgan.process(
image=image,
strength=facetool_parameters["strength"],
seed=seed,
)
elif facetool_parameters["type"] == "codeformer":
image = self.codeformer.process(
image=image,
strength=facetool_parameters["strength"],
fidelity=facetool_parameters["codeformer_fidelity"],
seed=seed,
device="cpu"
if str(self.generate.device) == "mps"
else self.generate.device,
)
all_parameters["codeformer_fidelity"] = facetool_parameters[
"codeformer_fidelity"
]
postprocessing = True
all_parameters["facetool_strength"] = facetool_parameters[
"strength"
]
all_parameters["facetool_type"] = facetool_parameters["type"]
progress.set_current_status("Saving Image")
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
# restore the stashed URLS and discard the paths, we are about to send the result to client
if "init_img" in all_parameters:
all_parameters["init_img"] = ""
if "init_mask" in all_parameters:
all_parameters["init_mask"] = "" # TODO: store the mask in metadata
if generation_parameters["generation_mode"] == "outpainting":
all_parameters["bounding_box"] = original_bounding_box
metadata = self.parameters_to_generated_image_metadata(all_parameters)
command = parameters_to_command(all_parameters)
(width, height) = image.size
path = self.save_result_image(
image,
command,
metadata,
self.result_path,
postprocessing=postprocessing,
)
print(f'>> Image generated: "{path}"')
self.write_log_message(f'[Generated] "{path}": {command}')
if progress.total_iterations > progress.current_iteration:
progress.set_current_step(1)
progress.set_current_status("Iteration complete")
progress.set_current_status_has_steps(False)
else:
progress.mark_complete()
self.socketio.emit("progressUpdate", progress.to_formatted_dict())
eventlet.sleep(0)
self.socketio.emit(
"generationResult",
{
"url": self.get_url_from_image_path(path),
"mtime": os.path.getmtime(path),
"metadata": metadata,
"width": width,
"height": height,
"boundingBox": original_bounding_box,
"generationMode": generation_parameters["generation_mode"],
},
)
eventlet.sleep(0)
progress.set_current_iteration(progress.current_iteration + 1)
self.generate.prompt2image(
**generation_parameters,
step_callback=image_progress,
image_callback=image_done,
)
except KeyboardInterrupt:
self.socketio.emit("processingCanceled")
raise
except CanceledException:
self.socketio.emit("processingCanceled")
pass
except Exception as e:
print(e)
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def parameters_to_generated_image_metadata(self, parameters):
try:
# top-level metadata minus `image` or `images`
metadata = self.get_system_config()
# remove any image keys not mentioned in RFC #266
rfc266_img_fields = [
"type",
"postprocessing",
"sampler",
"prompt",
"seed",
"variations",
"steps",
"cfg_scale",
"threshold",
"perlin",
"step_number",
"width",
"height",
"extra",
"seamless",
"hires_fix",
]
rfc_dict = {}
for item in parameters.items():
key, value = item
if key in rfc266_img_fields:
rfc_dict[key] = value
postprocessing = []
# 'postprocessing' is either null or an
if "facetool_strength" in parameters:
facetool_parameters = {
"type": str(parameters["facetool_type"]),
"strength": float(parameters["facetool_strength"]),
}
if parameters["facetool_type"] == "codeformer":
facetool_parameters["fidelity"] = float(
parameters["codeformer_fidelity"]
)
postprocessing.append(facetool_parameters)
if "upscale" in parameters:
postprocessing.append(
{
"type": "esrgan",
"scale": int(parameters["upscale"][0]),
"strength": float(parameters["upscale"][1]),
}
)
rfc_dict["postprocessing"] = (
postprocessing if len(postprocessing) > 0 else None
)
# semantic drift
rfc_dict["sampler"] = parameters["sampler_name"]
# display weighted subprompts (liable to change)
subprompts = split_weighted_subprompts(
parameters["prompt"], skip_normalize=True
)
subprompts = [{"prompt": x[0], "weight": x[1]} for x in subprompts]
rfc_dict["prompt"] = subprompts
# 'variations' should always exist and be an array, empty or consisting of {'seed': seed, 'weight': weight} pairs
variations = []
if "with_variations" in parameters:
variations = [
{"seed": x[0], "weight": x[1]}
for x in parameters["with_variations"]
]
rfc_dict["variations"] = variations
# if "init_img" in parameters:
# rfc_dict["type"] = "img2img"
# rfc_dict["strength"] = parameters["strength"]
# rfc_dict["fit"] = parameters["fit"] # TODO: Noncompliant
# rfc_dict["orig_hash"] = calculate_init_img_hash(
# self.get_image_path_from_url(parameters["init_img"])
# )
# rfc_dict["init_image_path"] = parameters[
# "init_img"
# ] # TODO: Noncompliant
# # if 'init_mask' in parameters:
# # rfc_dict['mask_hash'] = calculate_init_img_hash(
# # self.get_image_path_from_url(parameters['init_mask'])
# # ) # TODO: Noncompliant
# # rfc_dict['mask_image_path'] = parameters[
# # 'init_mask'
# # ] # TODO: Noncompliant
# else:
# rfc_dict["type"] = "txt2img"
metadata["image"] = rfc_dict
return metadata
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def parameters_to_post_processed_image_metadata(
self, parameters, original_image_path
):
try:
current_metadata = retrieve_metadata(original_image_path)["sd-metadata"]
postprocessing_metadata = {}
"""
if we don't have an original image metadata to reconstruct,
need to record the original image and its hash
"""
if "image" not in current_metadata:
current_metadata["image"] = {}
orig_hash = calculate_init_img_hash(
self.get_image_path_from_url(original_image_path)
)
postprocessing_metadata["orig_path"] = (original_image_path,)
postprocessing_metadata["orig_hash"] = orig_hash
if parameters["type"] == "esrgan":
postprocessing_metadata["type"] = "esrgan"
postprocessing_metadata["scale"] = parameters["upscale"][0]
postprocessing_metadata["strength"] = parameters["upscale"][1]
elif parameters["type"] == "gfpgan":
postprocessing_metadata["type"] = "gfpgan"
postprocessing_metadata["strength"] = parameters["facetool_strength"]
elif parameters["type"] == "codeformer":
postprocessing_metadata["type"] = "codeformer"
postprocessing_metadata["strength"] = parameters["facetool_strength"]
postprocessing_metadata["fidelity"] = parameters["codeformer_fidelity"]
else:
raise TypeError(f"Invalid type: {parameters['type']}")
if "postprocessing" in current_metadata["image"] and isinstance(
current_metadata["image"]["postprocessing"], list
):
current_metadata["image"]["postprocessing"].append(
postprocessing_metadata
)
else:
current_metadata["image"]["postprocessing"] = [postprocessing_metadata]
return current_metadata
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def save_result_image(
self,
image,
command,
metadata,
output_dir,
step_index=None,
postprocessing=False,
):
try:
pngwriter = PngWriter(output_dir)
number_prefix = pngwriter.unique_prefix()
uuid = uuid4().hex
truncated_uuid = uuid[:8]
seed = "unknown_seed"
if "image" in metadata:
if "seed" in metadata["image"]:
seed = metadata["image"]["seed"]
filename = f"{number_prefix}.{truncated_uuid}.{seed}"
if step_index:
filename += f".{step_index}"
if postprocessing:
filename += f".postprocessed"
filename += ".png"
path = pngwriter.save_image_and_prompt_to_png(
image=image,
dream_prompt=command,
metadata=metadata,
name=filename,
)
return os.path.abspath(path)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def make_unique_init_image_filename(self, name):
try:
uuid = uuid4().hex
split = os.path.splitext(name)
name = f"{split[0]}.{uuid}{split[1]}"
return name
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def calculate_real_steps(self, steps, strength, has_init_image):
import math
return math.floor(strength * steps) if has_init_image else steps
def write_log_message(self, message):
"""Logs the filename and parameters used to generate or process that image to log file"""
try:
message = f"{message}\n"
with open(self.log_path, "a", encoding="utf-8") as file:
file.writelines(message)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def get_image_path_from_url(self, url):
"""Given a url to an image used by the client, returns the absolute file path to that image"""
try:
if "init-images" in url:
return os.path.abspath(
os.path.join(self.init_image_path, os.path.basename(url))
)
elif "mask-images" in url:
return os.path.abspath(
os.path.join(self.mask_image_path, os.path.basename(url))
)
elif "intermediates" in url:
return os.path.abspath(
os.path.join(self.intermediate_path, os.path.basename(url))
)
else:
return os.path.abspath(
os.path.join(self.result_path, os.path.basename(url))
)
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def get_url_from_image_path(self, path):
"""Given an absolute file path to an image, returns the URL that the client can use to load the image"""
try:
if "init-images" in path:
return os.path.join(self.init_image_url, os.path.basename(path))
elif "mask-images" in path:
return os.path.join(self.mask_image_url, os.path.basename(path))
elif "intermediates" in path:
return os.path.join(self.intermediate_url, os.path.basename(path))
else:
return os.path.join(self.result_url, os.path.basename(path))
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
def save_file_unique_uuid_name(self, bytes, name, path):
try:
uuid = uuid4().hex
truncated_uuid = uuid[:8]
split = os.path.splitext(name)
name = f"{split[0]}.{truncated_uuid}{split[1]}"
file_path = os.path.join(path, name)
os.makedirs(os.path.dirname(file_path), exist_ok=True)
newFile = open(file_path, "wb")
newFile.write(bytes)
return file_path
except Exception as e:
self.socketio.emit("error", {"message": (str(e))})
print("\n")
traceback.print_exc()
print("\n")
class Progress:
def __init__(self, generation_parameters=None):
self.current_step = 1
self.total_steps = (
self._calculate_real_steps(
steps=generation_parameters["steps"],
strength=generation_parameters["strength"]
if "strength" in generation_parameters
else None,
has_init_image="init_img" in generation_parameters,
)
if generation_parameters
else 1
)
self.current_iteration = 1
self.total_iterations = (
generation_parameters["iterations"] if generation_parameters else 1
)
self.current_status = "Preparing"
self.is_processing = True
self.current_status_has_steps = False
self.has_error = False
def set_current_step(self, current_step):
self.current_step = current_step
def set_total_steps(self, total_steps):
self.total_steps = total_steps
def set_current_iteration(self, current_iteration):
self.current_iteration = current_iteration
def set_total_iterations(self, total_iterations):
self.total_iterations = total_iterations
def set_current_status(self, current_status):
self.current_status = current_status
def set_is_processing(self, is_processing):
self.is_processing = is_processing
def set_current_status_has_steps(self, current_status_has_steps):
self.current_status_has_steps = current_status_has_steps
def set_has_error(self, has_error):
self.has_error = has_error
def mark_complete(self):
self.current_status = "Processing Complete"
self.current_step = 0
self.total_steps = 0
self.current_iteration = 0
self.total_iterations = 0
self.is_processing = False
def to_formatted_dict(
self,
):
return {
"currentStep": self.current_step,
"totalSteps": self.total_steps,
"currentIteration": self.current_iteration,
"totalIterations": self.total_iterations,
"currentStatus": self.current_status,
"isProcessing": self.is_processing,
"currentStatusHasSteps": self.current_status_has_steps,
"hasError": self.has_error,
}
def _calculate_real_steps(self, steps, strength, has_init_image):
return math.floor(strength * steps) if has_init_image else steps
class CanceledException(Exception):
pass
"""
Returns a copy an image, cropped to a bounding box.
"""
def copy_image_from_bounding_box(
image: ImageType, x: int, y: int, width: int, height: int
) -> ImageType:
with image as im:
bounds = (x, y, x + width, y + height)
im_cropped = im.crop(bounds)
return im_cropped
"""
Converts a base64 image dataURL into an image.
The dataURL is split on the first commma.
"""
def dataURL_to_image(dataURL: str) -> ImageType:
image = Image.open(
io.BytesIO(
base64.decodebytes(
bytes(
dataURL.split(",", 1)[1],
"utf-8",
)
)
)
)
return image
"""
Converts a base64 image dataURL into bytes.
The dataURL is split on the first commma.
"""
def dataURL_to_bytes(dataURL: str) -> bytes:
return base64.decodebytes(
bytes(
dataURL.split(",", 1)[1],
"utf-8",
)
)
"""
Pastes an image onto another with a bounding box.
"""
def paste_image_into_bounding_box(
recipient_image: ImageType,
donor_image: ImageType,
x: int,
y: int,
width: int,
height: int,
) -> ImageType:
with recipient_image as im:
bounds = (x, y, x + width, y + height)
im.paste(donor_image, bounds)
return recipient_image