InvokeAI/ldm/gfpgan/gfpgan_tools.py
Lincoln Stein 720e5cd651
Refactoring simplet2i (#387)
* start refactoring -not yet functional

* first phase of refactor done - not sure weighted prompts working

* Second phase of refactoring. Everything mostly working.
* The refactoring has moved all the hard-core inference work into
ldm.dream.generator.*, where there are submodules for txt2img and
img2img. inpaint will go in there as well.
* Some additional refactoring will be done soon, but relatively
minor work.

* fix -save_orig flag to actually work

* add @neonsecret attention.py memory optimization

* remove unneeded imports

* move token logging into conditioning.py

* add placeholder version of inpaint; porting in progress

* fix crash in img2img

* inpainting working; not tested on variations

* fix crashes in img2img

* ported attention.py memory optimization #117 from basujindal branch

* added @torch_no_grad() decorators to img2img, txt2img, inpaint closures

* Final commit prior to PR against development
* fixup crash when generating intermediate images in web UI
* rename ldm.simplet2i to ldm.generate
* add backward-compatibility simplet2i shell with deprecation warning

* add back in mps exception, addresses @vargol comment in #354

* replaced Conditioning class with exported functions

* fix wrong type of with_variations attribute during intialization

* changed "image_iterator()" to "get_make_image()"

* raise NotImplementedError for calling get_make_image() in parent class

* Update ldm/generate.py

better error message

Co-authored-by: Kevin Gibbons <bakkot@gmail.com>

* minor stylistic fixes and assertion checks from code review

* moved get_noise() method into img2img class

* break get_noise() into two methods, one for txt2img and the other for img2img

* inpainting works on non-square images now

* make get_noise() an abstract method in base class

* much improved inpainting

Co-authored-by: Kevin Gibbons <bakkot@gmail.com>
2022-09-05 20:40:10 -04:00

168 lines
5.2 KiB
Python

import torch
import warnings
import os
import sys
import numpy as np
from PIL import Image
from scripts.dream import create_argv_parser
arg_parser = create_argv_parser()
opt = arg_parser.parse_args()
model_path = os.path.join(opt.gfpgan_dir, opt.gfpgan_model_path)
gfpgan_model_exists = os.path.isfile(model_path)
def run_gfpgan(image, strength, seed, upsampler_scale=4):
print(f'>> GFPGAN - Restoring Faces for image seed:{seed}')
gfpgan = None
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
if not gfpgan_model_exists:
raise Exception('GFPGAN model not found at path ' + model_path)
sys.path.append(os.path.abspath(opt.gfpgan_dir))
from gfpgan import GFPGANer
bg_upsampler = _load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile
)
gfpgan = GFPGANer(
model_path=model_path,
upscale=upsampler_scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=bg_upsampler,
)
except Exception:
import traceback
print('>> Error loading GFPGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if gfpgan is None:
print(
f'>> GFPGAN not initialized. Their packages must be installed as siblings to the "stable-diffusion" folder, or set explicitly using the --gfpgan_dir option.'
)
return image
image = image.convert('RGB')
cropped_faces, restored_faces, restored_img = gfpgan.enhance(
np.array(image, dtype=np.uint8),
has_aligned=False,
only_center_face=False,
paste_back=True,
)
res = Image.fromarray(restored_img)
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if restored_img.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
gfpgan = None
return res
def _load_gfpgan_bg_upsampler(bg_upsampler, upsampler_scale, bg_tile=400):
if bg_upsampler == 'realesrgan':
if not torch.cuda.is_available(): # CPU
warnings.warn(
'The unoptimized RealESRGAN is slow on CPU. We do not use it. '
'If you really want to use it, please modify the corresponding codes.'
)
bg_upsampler = None
else:
model_path = {
2: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth',
4: 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth',
}
if upsampler_scale not in model_path:
return None
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
if upsampler_scale == 4:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=4,
)
if upsampler_scale == 2:
model = RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=64,
num_block=23,
num_grow_ch=32,
scale=2,
)
bg_upsampler = RealESRGANer(
scale=upsampler_scale,
model_path=model_path[upsampler_scale],
model=model,
tile=bg_tile,
tile_pad=10,
pre_pad=0,
half=True,
) # need to set False in CPU mode
else:
bg_upsampler = None
return bg_upsampler
def real_esrgan_upscale(image, strength, upsampler_scale, seed):
print(
f'>> Real-ESRGAN Upscaling seed:{seed} : scale:{upsampler_scale}x'
)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=DeprecationWarning)
warnings.filterwarnings('ignore', category=UserWarning)
try:
upsampler = _load_gfpgan_bg_upsampler(
opt.gfpgan_bg_upsampler, upsampler_scale, opt.gfpgan_bg_tile
)
except Exception:
import traceback
print('>> Error loading Real-ESRGAN:', file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
output, img_mode = upsampler.enhance(
np.array(image, dtype=np.uint8),
outscale=upsampler_scale,
alpha_upsampler=opt.gfpgan_bg_upsampler,
)
res = Image.fromarray(output)
if strength < 1.0:
# Resize the image to the new image if the sizes have changed
if output.size != image.size:
image = image.resize(res.size)
res = Image.blend(image, res, strength)
if torch.cuda.is_available():
torch.cuda.empty_cache()
upsampler = None
return res