mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
74bfb5e1f9
And it own dataclasses for passing info.
181 lines
7.6 KiB
Python
181 lines
7.6 KiB
Python
from builtins import bool, float
|
|
from typing import Dict, List, Literal, Optional, Union
|
|
|
|
from pydantic import BaseModel, Field, validator
|
|
from invokeai.app.invocations.primitives import ImageField
|
|
|
|
from ...backend.model_management import BaseModelType
|
|
|
|
from .baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
FieldDescriptions,
|
|
InputField,
|
|
Input,
|
|
InvocationContext,
|
|
OutputField,
|
|
UIType,
|
|
invocation,
|
|
invocation_output,
|
|
)
|
|
|
|
CONTROL_ADAPTER_TYPES = Literal["ControlNet", "IP-Adapter", "T2I-Adapter"]
|
|
|
|
CONTROLNET_MODE_VALUES = Literal["balanced", "more_prompt", "more_control", "unbalanced"]
|
|
CONTROLNET_RESIZE_VALUES = Literal[
|
|
"just_resize",
|
|
"crop_resize",
|
|
"fill_resize",
|
|
"just_resize_simple",
|
|
]
|
|
|
|
class ControlNetModelField(BaseModel):
|
|
"""ControlNet model field"""
|
|
|
|
model_name: str = Field(description="Name of the ControlNet model")
|
|
base_model: BaseModelType = Field(description="Base model")
|
|
|
|
|
|
class ControlField(BaseModel):
|
|
control_type: CONTROL_ADAPTER_TYPES = Field(default="ControlNet", description="The type of control adapter")
|
|
image: ImageField = Field(description="The control image")
|
|
# control_model and ip_adapter_models are both optional
|
|
# but must be on the two present
|
|
# if control_type == "ControlNet", then mus be control_model
|
|
# if control_type == "IP-Adapter", then must be ip_adapter_model
|
|
control_model: Optional[ControlNetModelField] = Field(description="The ControlNet model to use")
|
|
ip_adapter_model: Optional[str] = Field(description="The IP-Adapter model to use")
|
|
image_encoder_model: Optional[str] = Field(description="The clip_image_encoder model to use")
|
|
control_weight: Union[float, List[float]] = Field(default=1, description="The weight given to the ControlNet")
|
|
begin_step_percent: float = Field(
|
|
default=0, ge=0, le=1, description="When the ControlNet is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = Field(
|
|
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
|
)
|
|
control_mode: CONTROLNET_MODE_VALUES = Field(default="balanced", description="The control mode to use")
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = Field(default="just_resize", description="The resize mode to use")
|
|
|
|
@validator("control_weight")
|
|
def validate_control_weight(cls, v):
|
|
"""Validate that all control weights in the valid range"""
|
|
if isinstance(v, list):
|
|
for i in v:
|
|
if i < -1 or i > 2:
|
|
raise ValueError("Control weights must be within -1 to 2 range")
|
|
else:
|
|
if v < -1 or v > 2:
|
|
raise ValueError("Control weights must be within -1 to 2 range")
|
|
return v
|
|
|
|
@invocation_output("control_output")
|
|
class ControlOutput(BaseInvocationOutput):
|
|
"""node output for ControlNet info"""
|
|
|
|
type: Literal["control_output"] = "control_output"
|
|
|
|
# Outputs
|
|
control: ControlField = OutputField(description=FieldDescriptions.control)
|
|
|
|
|
|
|
|
@invocation("controlnet", title="ControlNet", tags=["controlnet"], category="controlnet")
|
|
class ControlNetInvocation(BaseInvocation):
|
|
"""Collects ControlNet info to pass to other nodes"""
|
|
|
|
type: Literal["controlnet"] = "controlnet"
|
|
|
|
# Inputs
|
|
image: ImageField = InputField(description="The control image")
|
|
control_model: ControlNetModelField = InputField(
|
|
default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
|
|
)
|
|
control_weight: Union[float, List[float]] = InputField(
|
|
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
|
|
)
|
|
begin_step_percent: float = InputField(
|
|
default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
|
|
)
|
|
end_step_percent: float = InputField(
|
|
default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
|
)
|
|
control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
|
resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
|
|
|
def invoke(self, context: InvocationContext) -> ControlOutput:
|
|
return ControlOutput(
|
|
control=ControlField(
|
|
control_type="ControlNet",
|
|
image=self.image,
|
|
control_model=self.control_model,
|
|
# ip_adapter_model is currently optional
|
|
# must be either a control_model or ip_adapter_model
|
|
# ip_adapter_model=None,
|
|
control_weight=self.control_weight,
|
|
begin_step_percent=self.begin_step_percent,
|
|
end_step_percent=self.end_step_percent,
|
|
control_mode=self.control_mode,
|
|
resize_mode=self.resize_mode,
|
|
),
|
|
)
|
|
|
|
IP_ADAPTER_MODELS = Literal[
|
|
"models_ip_adapter/models/ip-adapter_sd15.bin",
|
|
"models_ip_adapter/models/ip-adapter-plus_sd15.bin",
|
|
"models_ip_adapter/models/ip-adapter-plus-face_sd15.bin",
|
|
"models_ip_adapter/sdxl_models/ip-adapter_sdxl.bin"
|
|
]
|
|
|
|
IP_ADAPTER_IMAGE_ENCODER_MODELS = Literal[
|
|
"models_ip_adapter/models/image_encoder/",
|
|
"./models_ip_adapter/models/image_encoder/",
|
|
"models_ip_adapter/sdxl_models/image_encoder/"
|
|
]
|
|
|
|
@invocation("ipadapter", title="IP-Adapter", tags=["ipadapter"], category="ipadapter")
|
|
class IPAdapterInvocation(BaseInvocation):
|
|
"""Collects IP-Adapter info to pass to other nodes"""
|
|
|
|
type: Literal["ipadapter"] = "ipadapter"
|
|
|
|
# Inputs
|
|
image: ImageField = InputField(description="The control image")
|
|
#control_model: ControlNetModelField = InputField(
|
|
# default="lllyasviel/sd-controlnet-canny", description=FieldDescriptions.controlnet_model, input=Input.Direct
|
|
#)
|
|
ip_adapter_model: IP_ADAPTER_MODELS = InputField(default="./models_ip_adapter/models/ip-adapter_sd15.bin",
|
|
description="The IP-Adapter model")
|
|
image_encoder_model: IP_ADAPTER_IMAGE_ENCODER_MODELS = InputField(
|
|
default="./models_ip_adapter/models/image_encoder/",
|
|
description="The image encoder model")
|
|
control_weight: Union[float, List[float]] = InputField(
|
|
default=1.0, description="The weight given to the ControlNet", ui_type=UIType.Float
|
|
)
|
|
# begin_step_percent: float = InputField(
|
|
# default=0, ge=-1, le=2, description="When the ControlNet is first applied (% of total steps)"
|
|
# )
|
|
# end_step_percent: float = InputField(
|
|
# default=1, ge=0, le=1, description="When the ControlNet is last applied (% of total steps)"
|
|
# )
|
|
# control_mode: CONTROLNET_MODE_VALUES = InputField(default="balanced", description="The control mode used")
|
|
# resize_mode: CONTROLNET_RESIZE_VALUES = InputField(default="just_resize", description="The resize mode used")
|
|
|
|
def invoke(self, context: InvocationContext) -> ControlOutput:
|
|
return ControlOutput(
|
|
control=ControlField(
|
|
control_type="IP-Adapter",
|
|
image=self.image,
|
|
# control_model is currently optional
|
|
# must be either a control_model or ip_adapter_model
|
|
# control_model=None,
|
|
ip_adapter_model=self.ip_adapter_model,
|
|
image_encoder_model=self.image_encoder_model,
|
|
control_weight=self.control_weight,
|
|
# rest are currently ignored
|
|
#begin_step_percent=self.begin_step_percent,
|
|
#end_step_percent=self.end_step_percent,
|
|
#control_mode=self.control_mode,
|
|
#resize_mode=self.resize_mode,
|
|
),
|
|
)
|