mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
171 lines
4.9 KiB
Python
171 lines
4.9 KiB
Python
import os
|
||
import random
|
||
|
||
import numpy as np
|
||
import PIL
|
||
from PIL import Image
|
||
from torch.utils.data import Dataset
|
||
from torchvision import transforms
|
||
|
||
imagenet_templates_small = [
|
||
"a painting in the style of {}",
|
||
"a rendering in the style of {}",
|
||
"a cropped painting in the style of {}",
|
||
"the painting in the style of {}",
|
||
"a clean painting in the style of {}",
|
||
"a dirty painting in the style of {}",
|
||
"a dark painting in the style of {}",
|
||
"a picture in the style of {}",
|
||
"a cool painting in the style of {}",
|
||
"a close-up painting in the style of {}",
|
||
"a bright painting in the style of {}",
|
||
"a cropped painting in the style of {}",
|
||
"a good painting in the style of {}",
|
||
"a close-up painting in the style of {}",
|
||
"a rendition in the style of {}",
|
||
"a nice painting in the style of {}",
|
||
"a small painting in the style of {}",
|
||
"a weird painting in the style of {}",
|
||
"a large painting in the style of {}",
|
||
]
|
||
|
||
imagenet_dual_templates_small = [
|
||
"a painting in the style of {} with {}",
|
||
"a rendering in the style of {} with {}",
|
||
"a cropped painting in the style of {} with {}",
|
||
"the painting in the style of {} with {}",
|
||
"a clean painting in the style of {} with {}",
|
||
"a dirty painting in the style of {} with {}",
|
||
"a dark painting in the style of {} with {}",
|
||
"a cool painting in the style of {} with {}",
|
||
"a close-up painting in the style of {} with {}",
|
||
"a bright painting in the style of {} with {}",
|
||
"a cropped painting in the style of {} with {}",
|
||
"a good painting in the style of {} with {}",
|
||
"a painting of one {} in the style of {}",
|
||
"a nice painting in the style of {} with {}",
|
||
"a small painting in the style of {} with {}",
|
||
"a weird painting in the style of {} with {}",
|
||
"a large painting in the style of {} with {}",
|
||
]
|
||
|
||
per_img_token_list = [
|
||
"א",
|
||
"ב",
|
||
"ג",
|
||
"ד",
|
||
"ה",
|
||
"ו",
|
||
"ז",
|
||
"ח",
|
||
"ט",
|
||
"י",
|
||
"כ",
|
||
"ל",
|
||
"מ",
|
||
"נ",
|
||
"ס",
|
||
"ע",
|
||
"פ",
|
||
"צ",
|
||
"ק",
|
||
"ר",
|
||
"ש",
|
||
"ת",
|
||
]
|
||
|
||
|
||
class PersonalizedBase(Dataset):
|
||
def __init__(
|
||
self,
|
||
data_root,
|
||
size=None,
|
||
repeats=100,
|
||
interpolation="bicubic",
|
||
flip_p=0.5,
|
||
set="train",
|
||
placeholder_token="*",
|
||
per_image_tokens=False,
|
||
center_crop=False,
|
||
):
|
||
self.data_root = data_root
|
||
|
||
self.image_paths = [
|
||
os.path.join(self.data_root, file_path)
|
||
for file_path in os.listdir(self.data_root)
|
||
if file_path != ".DS_Store"
|
||
]
|
||
|
||
# self._length = len(self.image_paths)
|
||
self.num_images = len(self.image_paths)
|
||
self._length = self.num_images
|
||
|
||
self.placeholder_token = placeholder_token
|
||
|
||
self.per_image_tokens = per_image_tokens
|
||
self.center_crop = center_crop
|
||
|
||
if per_image_tokens:
|
||
assert self.num_images < len(
|
||
per_img_token_list
|
||
), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
|
||
|
||
if set == "train":
|
||
self._length = self.num_images * repeats
|
||
|
||
self.size = size
|
||
self.interpolation = {
|
||
"linear": PIL.Image.LINEAR,
|
||
"bilinear": PIL.Image.BILINEAR,
|
||
"bicubic": PIL.Image.BICUBIC,
|
||
"lanczos": PIL.Image.LANCZOS,
|
||
}[interpolation]
|
||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||
|
||
def __len__(self):
|
||
return self._length
|
||
|
||
def __getitem__(self, i):
|
||
example = {}
|
||
image = Image.open(self.image_paths[i % self.num_images])
|
||
|
||
if not image.mode == "RGB":
|
||
image = image.convert("RGB")
|
||
|
||
if self.per_image_tokens and np.random.uniform() < 0.25:
|
||
text = random.choice(imagenet_dual_templates_small).format(
|
||
self.placeholder_token, per_img_token_list[i % self.num_images]
|
||
)
|
||
else:
|
||
text = random.choice(imagenet_templates_small).format(
|
||
self.placeholder_token
|
||
)
|
||
|
||
example["caption"] = text
|
||
|
||
# default to score-sde preprocessing
|
||
img = np.array(image).astype(np.uint8)
|
||
|
||
if self.center_crop:
|
||
crop = min(img.shape[0], img.shape[1])
|
||
(
|
||
h,
|
||
w,
|
||
) = (
|
||
img.shape[0],
|
||
img.shape[1],
|
||
)
|
||
img = img[
|
||
(h - crop) // 2 : (h + crop) // 2,
|
||
(w - crop) // 2 : (w + crop) // 2,
|
||
]
|
||
|
||
image = Image.fromarray(img)
|
||
if self.size is not None:
|
||
image = image.resize((self.size, self.size), resample=self.interpolation)
|
||
|
||
image = self.flip(image)
|
||
image = np.array(image).astype(np.uint8)
|
||
example["image"] = (image / 127.5 - 1.0).astype(np.float32)
|
||
return example
|