mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
637 lines
22 KiB
Python
637 lines
22 KiB
Python
# Copyright (c) 2024 The InvokeAI Development team
|
|
"""LoRA model support."""
|
|
|
|
import bisect
|
|
from pathlib import Path
|
|
from typing import Dict, List, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
from safetensors.torch import load_file
|
|
from typing_extensions import Self
|
|
|
|
import invokeai.backend.util.logging as logger
|
|
from invokeai.backend.model_manager import BaseModelType
|
|
from invokeai.backend.raw_model import RawModel
|
|
|
|
|
|
class LoRALayerBase:
|
|
# rank: Optional[int]
|
|
# alpha: Optional[float]
|
|
# bias: Optional[torch.Tensor]
|
|
# layer_key: str
|
|
|
|
# @property
|
|
# def scale(self):
|
|
# return self.alpha / self.rank if (self.alpha and self.rank) else 1.0
|
|
|
|
def __init__(
|
|
self,
|
|
layer_key: str,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
if "alpha" in values:
|
|
self.alpha = values["alpha"].item()
|
|
else:
|
|
self.alpha = None
|
|
|
|
if "bias_indices" in values and "bias_values" in values and "bias_size" in values:
|
|
self.bias: Optional[torch.Tensor] = torch.sparse_coo_tensor(
|
|
values["bias_indices"],
|
|
values["bias_values"],
|
|
tuple(values["bias_size"]),
|
|
)
|
|
|
|
else:
|
|
self.bias = None
|
|
|
|
self.rank = None # set in layer implementation
|
|
self.layer_key = layer_key
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
raise NotImplementedError()
|
|
|
|
def get_bias(self, orig_bias: torch.Tensor) -> Optional[torch.Tensor]:
|
|
return self.bias
|
|
|
|
def get_parameters(self, orig_module: torch.nn.Module) -> Dict[str, torch.Tensor]:
|
|
params = {"weight": self.get_weight(orig_module.weight)}
|
|
bias = self.get_bias(orig_module.bias)
|
|
if bias is not None:
|
|
params["bias"] = bias
|
|
return params
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = 0
|
|
for val in [self.bias]:
|
|
if val is not None:
|
|
model_size += val.nelement() * val.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
if self.bias is not None:
|
|
self.bias = self.bias.to(device=device, dtype=dtype)
|
|
|
|
def check_keys(self, values: Dict[str, torch.Tensor], known_keys: Set[str]):
|
|
"""Log a warning if values contains unhandled keys."""
|
|
# {"alpha", "bias_indices", "bias_values", "bias_size"} are hard-coded, because they are handled by
|
|
# `LoRALayerBase`. Sub-classes should provide the known_keys that they handled.
|
|
all_known_keys = known_keys | {"alpha", "bias_indices", "bias_values", "bias_size"}
|
|
unknown_keys = set(values.keys()) - all_known_keys
|
|
if unknown_keys:
|
|
logger.warning(
|
|
f"Unexpected keys found in LoRA/LyCORIS layer, model might work incorrectly! Keys: {unknown_keys}"
|
|
)
|
|
|
|
|
|
# TODO: find and debug lora/locon with bias
|
|
class LoRALayer(LoRALayerBase):
|
|
# up: torch.Tensor
|
|
# mid: Optional[torch.Tensor]
|
|
# down: torch.Tensor
|
|
|
|
def __init__(
|
|
self,
|
|
layer_key: str,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
super().__init__(layer_key, values)
|
|
|
|
self.up = values["lora_up.weight"]
|
|
self.down = values["lora_down.weight"]
|
|
self.mid = values.get("lora_mid.weight", None)
|
|
|
|
self.rank = self.down.shape[0]
|
|
self.check_keys(
|
|
values,
|
|
{
|
|
"lora_up.weight",
|
|
"lora_down.weight",
|
|
"lora_mid.weight",
|
|
},
|
|
)
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
if self.mid is not None:
|
|
up = self.up.reshape(self.up.shape[0], self.up.shape[1])
|
|
down = self.down.reshape(self.down.shape[0], self.down.shape[1])
|
|
weight = torch.einsum("m n w h, i m, n j -> i j w h", self.mid, up, down)
|
|
else:
|
|
weight = self.up.reshape(self.up.shape[0], -1) @ self.down.reshape(self.down.shape[0], -1)
|
|
|
|
return weight
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = super().calc_size()
|
|
for val in [self.up, self.mid, self.down]:
|
|
if val is not None:
|
|
model_size += val.nelement() * val.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
super().to(device=device, dtype=dtype)
|
|
|
|
self.up = self.up.to(device=device, dtype=dtype)
|
|
self.down = self.down.to(device=device, dtype=dtype)
|
|
|
|
if self.mid is not None:
|
|
self.mid = self.mid.to(device=device, dtype=dtype)
|
|
|
|
|
|
class LoHALayer(LoRALayerBase):
|
|
# w1_a: torch.Tensor
|
|
# w1_b: torch.Tensor
|
|
# w2_a: torch.Tensor
|
|
# w2_b: torch.Tensor
|
|
# t1: Optional[torch.Tensor] = None
|
|
# t2: Optional[torch.Tensor] = None
|
|
|
|
def __init__(self, layer_key: str, values: Dict[str, torch.Tensor]):
|
|
super().__init__(layer_key, values)
|
|
|
|
self.w1_a = values["hada_w1_a"]
|
|
self.w1_b = values["hada_w1_b"]
|
|
self.w2_a = values["hada_w2_a"]
|
|
self.w2_b = values["hada_w2_b"]
|
|
self.t1 = values.get("hada_t1", None)
|
|
self.t2 = values.get("hada_t2", None)
|
|
|
|
self.rank = self.w1_b.shape[0]
|
|
self.check_keys(
|
|
values,
|
|
{
|
|
"hada_w1_a",
|
|
"hada_w1_b",
|
|
"hada_w2_a",
|
|
"hada_w2_b",
|
|
"hada_t1",
|
|
"hada_t2",
|
|
},
|
|
)
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
if self.t1 is None:
|
|
weight: torch.Tensor = (self.w1_a @ self.w1_b) * (self.w2_a @ self.w2_b)
|
|
|
|
else:
|
|
rebuild1 = torch.einsum("i j k l, j r, i p -> p r k l", self.t1, self.w1_b, self.w1_a)
|
|
rebuild2 = torch.einsum("i j k l, j r, i p -> p r k l", self.t2, self.w2_b, self.w2_a)
|
|
weight = rebuild1 * rebuild2
|
|
|
|
return weight
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = super().calc_size()
|
|
for val in [self.w1_a, self.w1_b, self.w2_a, self.w2_b, self.t1, self.t2]:
|
|
if val is not None:
|
|
model_size += val.nelement() * val.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
super().to(device=device, dtype=dtype)
|
|
|
|
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
|
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
|
if self.t1 is not None:
|
|
self.t1 = self.t1.to(device=device, dtype=dtype)
|
|
|
|
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
|
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
|
if self.t2 is not None:
|
|
self.t2 = self.t2.to(device=device, dtype=dtype)
|
|
|
|
|
|
class LoKRLayer(LoRALayerBase):
|
|
# w1: Optional[torch.Tensor] = None
|
|
# w1_a: Optional[torch.Tensor] = None
|
|
# w1_b: Optional[torch.Tensor] = None
|
|
# w2: Optional[torch.Tensor] = None
|
|
# w2_a: Optional[torch.Tensor] = None
|
|
# w2_b: Optional[torch.Tensor] = None
|
|
# t2: Optional[torch.Tensor] = None
|
|
|
|
def __init__(
|
|
self,
|
|
layer_key: str,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
super().__init__(layer_key, values)
|
|
|
|
self.w1 = values.get("lokr_w1", None)
|
|
if self.w1 is None:
|
|
self.w1_a = values.get("lokr_w1_a", None)
|
|
self.w1_b = values.get("lokr_w1_b", None)
|
|
else:
|
|
self.w1_b = None
|
|
self.w1_a = None
|
|
|
|
self.w2 = values.get("lokr_w2", None)
|
|
if self.w2 is None:
|
|
self.w2_a = values["lokr_w2_a"]
|
|
self.w2_b = values["lokr_w2_b"]
|
|
else:
|
|
self.w2_a = None
|
|
self.w2_b = None
|
|
|
|
self.t2 = values.get("lokr_t2", None)
|
|
|
|
if self.w1_b is not None:
|
|
self.rank = self.w1_b.shape[0]
|
|
elif self.w2_b is not None:
|
|
self.rank = self.w2_b.shape[0]
|
|
else:
|
|
self.rank = None # unscaled
|
|
|
|
self.check_keys(
|
|
values,
|
|
{
|
|
"lokr_w1",
|
|
"lokr_w1_a",
|
|
"lokr_w1_b",
|
|
"lokr_w2",
|
|
"lokr_w2_a",
|
|
"lokr_w2_b",
|
|
"lokr_t2",
|
|
},
|
|
)
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
w1: Optional[torch.Tensor] = self.w1
|
|
if w1 is None:
|
|
assert self.w1_a is not None
|
|
assert self.w1_b is not None
|
|
w1 = self.w1_a @ self.w1_b
|
|
|
|
w2 = self.w2
|
|
if w2 is None:
|
|
if self.t2 is None:
|
|
assert self.w2_a is not None
|
|
assert self.w2_b is not None
|
|
w2 = self.w2_a @ self.w2_b
|
|
else:
|
|
w2 = torch.einsum("i j k l, i p, j r -> p r k l", self.t2, self.w2_a, self.w2_b)
|
|
|
|
if len(w2.shape) == 4:
|
|
w1 = w1.unsqueeze(2).unsqueeze(2)
|
|
w2 = w2.contiguous()
|
|
assert w1 is not None
|
|
assert w2 is not None
|
|
weight = torch.kron(w1, w2)
|
|
|
|
return weight
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = super().calc_size()
|
|
for val in [self.w1, self.w1_a, self.w1_b, self.w2, self.w2_a, self.w2_b, self.t2]:
|
|
if val is not None:
|
|
model_size += val.nelement() * val.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
super().to(device=device, dtype=dtype)
|
|
|
|
if self.w1 is not None:
|
|
self.w1 = self.w1.to(device=device, dtype=dtype)
|
|
else:
|
|
assert self.w1_a is not None
|
|
assert self.w1_b is not None
|
|
self.w1_a = self.w1_a.to(device=device, dtype=dtype)
|
|
self.w1_b = self.w1_b.to(device=device, dtype=dtype)
|
|
|
|
if self.w2 is not None:
|
|
self.w2 = self.w2.to(device=device, dtype=dtype)
|
|
else:
|
|
assert self.w2_a is not None
|
|
assert self.w2_b is not None
|
|
self.w2_a = self.w2_a.to(device=device, dtype=dtype)
|
|
self.w2_b = self.w2_b.to(device=device, dtype=dtype)
|
|
|
|
if self.t2 is not None:
|
|
self.t2 = self.t2.to(device=device, dtype=dtype)
|
|
|
|
|
|
class FullLayer(LoRALayerBase):
|
|
# bias handled in LoRALayerBase(calc_size, to)
|
|
# weight: torch.Tensor
|
|
# bias: Optional[torch.Tensor]
|
|
|
|
def __init__(
|
|
self,
|
|
layer_key: str,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
super().__init__(layer_key, values)
|
|
|
|
self.weight = values["diff"]
|
|
self.bias = values.get("diff_b", None)
|
|
|
|
self.rank = None # unscaled
|
|
self.check_keys(values, {"diff", "diff_b"})
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
return self.weight
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = super().calc_size()
|
|
model_size += self.weight.nelement() * self.weight.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
super().to(device=device, dtype=dtype)
|
|
|
|
self.weight = self.weight.to(device=device, dtype=dtype)
|
|
|
|
|
|
class IA3Layer(LoRALayerBase):
|
|
# weight: torch.Tensor
|
|
# on_input: torch.Tensor
|
|
|
|
def __init__(
|
|
self,
|
|
layer_key: str,
|
|
values: Dict[str, torch.Tensor],
|
|
):
|
|
super().__init__(layer_key, values)
|
|
|
|
self.weight = values["weight"]
|
|
self.on_input = values["on_input"]
|
|
|
|
self.rank = None # unscaled
|
|
self.check_keys(values, {"weight", "on_input"})
|
|
|
|
def get_weight(self, orig_weight: torch.Tensor) -> torch.Tensor:
|
|
weight = self.weight
|
|
if not self.on_input:
|
|
weight = weight.reshape(-1, 1)
|
|
assert orig_weight is not None
|
|
return orig_weight * weight
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = super().calc_size()
|
|
model_size += self.weight.nelement() * self.weight.element_size()
|
|
model_size += self.on_input.nelement() * self.on_input.element_size()
|
|
return model_size
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
|
super().to(device=device, dtype=dtype)
|
|
|
|
self.weight = self.weight.to(device=device, dtype=dtype)
|
|
self.on_input = self.on_input.to(device=device, dtype=dtype)
|
|
|
|
|
|
AnyLoRALayer = Union[LoRALayer, LoHALayer, LoKRLayer, FullLayer, IA3Layer]
|
|
|
|
|
|
class LoRAModelRaw(RawModel): # (torch.nn.Module):
|
|
_name: str
|
|
layers: Dict[str, AnyLoRALayer]
|
|
|
|
def __init__(
|
|
self,
|
|
name: str,
|
|
layers: Dict[str, AnyLoRALayer],
|
|
):
|
|
self._name = name
|
|
self.layers = layers
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return self._name
|
|
|
|
def to(self, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None) -> None:
|
|
# TODO: try revert if exception?
|
|
for _key, layer in self.layers.items():
|
|
layer.to(device=device, dtype=dtype)
|
|
|
|
def calc_size(self) -> int:
|
|
model_size = 0
|
|
for _, layer in self.layers.items():
|
|
model_size += layer.calc_size()
|
|
return model_size
|
|
|
|
@classmethod
|
|
def _convert_sdxl_keys_to_diffusers_format(cls, state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
"""Convert the keys of an SDXL LoRA state_dict to diffusers format.
|
|
|
|
The input state_dict can be in either Stability AI format or diffusers format. If the state_dict is already in
|
|
diffusers format, then this function will have no effect.
|
|
|
|
This function is adapted from:
|
|
https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L385-L409
|
|
|
|
Args:
|
|
state_dict (Dict[str, Tensor]): The SDXL LoRA state_dict.
|
|
|
|
Raises:
|
|
ValueError: If state_dict contains an unrecognized key, or not all keys could be converted.
|
|
|
|
Returns:
|
|
Dict[str, Tensor]: The diffusers-format state_dict.
|
|
"""
|
|
converted_count = 0 # The number of Stability AI keys converted to diffusers format.
|
|
not_converted_count = 0 # The number of keys that were not converted.
|
|
|
|
# Get a sorted list of Stability AI UNet keys so that we can efficiently search for keys with matching prefixes.
|
|
# For example, we want to efficiently find `input_blocks_4_1` in the list when searching for
|
|
# `input_blocks_4_1_proj_in`.
|
|
stability_unet_keys = list(SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP)
|
|
stability_unet_keys.sort()
|
|
|
|
new_state_dict = {}
|
|
for full_key, value in state_dict.items():
|
|
if full_key.startswith("lora_unet_"):
|
|
search_key = full_key.replace("lora_unet_", "")
|
|
# Use bisect to find the key in stability_unet_keys that *may* match the search_key's prefix.
|
|
position = bisect.bisect_right(stability_unet_keys, search_key)
|
|
map_key = stability_unet_keys[position - 1]
|
|
# Now, check if the map_key *actually* matches the search_key.
|
|
if search_key.startswith(map_key):
|
|
new_key = full_key.replace(map_key, SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP[map_key])
|
|
new_state_dict[new_key] = value
|
|
converted_count += 1
|
|
else:
|
|
new_state_dict[full_key] = value
|
|
not_converted_count += 1
|
|
elif full_key.startswith("lora_te1_") or full_key.startswith("lora_te2_"):
|
|
# The CLIP text encoders have the same keys in both Stability AI and diffusers formats.
|
|
new_state_dict[full_key] = value
|
|
continue
|
|
else:
|
|
raise ValueError(f"Unrecognized SDXL LoRA key prefix: '{full_key}'.")
|
|
|
|
if converted_count > 0 and not_converted_count > 0:
|
|
raise ValueError(
|
|
f"The SDXL LoRA could only be partially converted to diffusers format. converted={converted_count},"
|
|
f" not_converted={not_converted_count}"
|
|
)
|
|
|
|
return new_state_dict
|
|
|
|
@classmethod
|
|
def from_checkpoint(
|
|
cls,
|
|
file_path: Union[str, Path],
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
base_model: Optional[BaseModelType] = None,
|
|
) -> Self:
|
|
device = device or torch.device("cpu")
|
|
dtype = dtype or torch.float32
|
|
|
|
if isinstance(file_path, str):
|
|
file_path = Path(file_path)
|
|
|
|
model = cls(
|
|
name=file_path.stem,
|
|
layers={},
|
|
)
|
|
|
|
if file_path.suffix == ".safetensors":
|
|
sd = load_file(file_path.absolute().as_posix(), device="cpu")
|
|
else:
|
|
sd = torch.load(file_path, map_location="cpu")
|
|
|
|
state_dict = cls._group_state(sd)
|
|
|
|
if base_model == BaseModelType.StableDiffusionXL:
|
|
state_dict = cls._convert_sdxl_keys_to_diffusers_format(state_dict)
|
|
|
|
for layer_key, values in state_dict.items():
|
|
# Detect layers according to LyCORIS detection logic(`weight_list_det`)
|
|
# https://github.com/KohakuBlueleaf/LyCORIS/tree/8ad8000efb79e2b879054da8c9356e6143591bad/lycoris/modules
|
|
|
|
# lora and locon
|
|
if "lora_up.weight" in values:
|
|
layer: AnyLoRALayer = LoRALayer(layer_key, values)
|
|
|
|
# loha
|
|
elif "hada_w1_a" in values:
|
|
layer = LoHALayer(layer_key, values)
|
|
|
|
# lokr
|
|
elif "lokr_w1" in values or "lokr_w1_a" in values:
|
|
layer = LoKRLayer(layer_key, values)
|
|
|
|
# diff
|
|
elif "diff" in values:
|
|
layer = FullLayer(layer_key, values)
|
|
|
|
# ia3
|
|
elif "on_input" in values:
|
|
layer = IA3Layer(layer_key, values)
|
|
|
|
else:
|
|
print(f">> Encountered unknown lora layer module in {model.name}: {layer_key} - {list(values.keys())}")
|
|
raise Exception("Unknown lora format!")
|
|
|
|
# lower memory consumption by removing already parsed layer values
|
|
state_dict[layer_key].clear()
|
|
|
|
layer.to(device=device, dtype=dtype)
|
|
model.layers[layer_key] = layer
|
|
|
|
return model
|
|
|
|
@staticmethod
|
|
def _group_state(state_dict: Dict[str, torch.Tensor]) -> Dict[str, Dict[str, torch.Tensor]]:
|
|
state_dict_groupped: Dict[str, Dict[str, torch.Tensor]] = {}
|
|
|
|
for key, value in state_dict.items():
|
|
stem, leaf = key.split(".", 1)
|
|
if stem not in state_dict_groupped:
|
|
state_dict_groupped[stem] = {}
|
|
state_dict_groupped[stem][leaf] = value
|
|
|
|
return state_dict_groupped
|
|
|
|
|
|
# code from
|
|
# https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L15C1-L97C32
|
|
def make_sdxl_unet_conversion_map() -> List[Tuple[str, str]]:
|
|
"""Create a dict mapping state_dict keys from Stability AI SDXL format to diffusers SDXL format."""
|
|
unet_conversion_map_layer = []
|
|
|
|
for i in range(3): # num_blocks is 3 in sdxl
|
|
# loop over downblocks/upblocks
|
|
for j in range(2):
|
|
# loop over resnets/attentions for downblocks
|
|
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
|
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
|
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
|
|
|
if i < 3:
|
|
# no attention layers in down_blocks.3
|
|
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
|
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
|
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
|
|
|
for j in range(3):
|
|
# loop over resnets/attentions for upblocks
|
|
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
|
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
|
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
|
|
|
# if i > 0: commentout for sdxl
|
|
# no attention layers in up_blocks.0
|
|
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
|
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
|
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
|
|
|
if i < 3:
|
|
# no downsample in down_blocks.3
|
|
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
|
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
|
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
|
|
|
# no upsample in up_blocks.3
|
|
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
|
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
|
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
|
|
|
hf_mid_atn_prefix = "mid_block.attentions.0."
|
|
sd_mid_atn_prefix = "middle_block.1."
|
|
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
|
|
|
for j in range(2):
|
|
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
|
sd_mid_res_prefix = f"middle_block.{2*j}."
|
|
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
|
|
|
unet_conversion_map_resnet = [
|
|
# (stable-diffusion, HF Diffusers)
|
|
("in_layers.0.", "norm1."),
|
|
("in_layers.2.", "conv1."),
|
|
("out_layers.0.", "norm2."),
|
|
("out_layers.3.", "conv2."),
|
|
("emb_layers.1.", "time_emb_proj."),
|
|
("skip_connection.", "conv_shortcut."),
|
|
]
|
|
|
|
unet_conversion_map = []
|
|
for sd, hf in unet_conversion_map_layer:
|
|
if "resnets" in hf:
|
|
for sd_res, hf_res in unet_conversion_map_resnet:
|
|
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
|
else:
|
|
unet_conversion_map.append((sd, hf))
|
|
|
|
for j in range(2):
|
|
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
|
sd_time_embed_prefix = f"time_embed.{j*2}."
|
|
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
|
|
|
for j in range(2):
|
|
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
|
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
|
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
|
|
|
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
|
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
|
unet_conversion_map.append(("out.2.", "conv_out."))
|
|
|
|
return unet_conversion_map
|
|
|
|
|
|
SDXL_UNET_STABILITY_TO_DIFFUSERS_MAP = {
|
|
sd.rstrip(".").replace(".", "_"): hf.rstrip(".").replace(".", "_") for sd, hf in make_sdxl_unet_conversion_map()
|
|
}
|