mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
167 lines
7.3 KiB
Python
167 lines
7.3 KiB
Python
import numpy as np
|
|
from PIL import Image
|
|
from pydantic import BaseModel
|
|
|
|
from invokeai.app.invocations.baseinvocation import (
|
|
BaseInvocation,
|
|
BaseInvocationOutput,
|
|
InputField,
|
|
InvocationContext,
|
|
OutputField,
|
|
WithMetadata,
|
|
WithWorkflow,
|
|
invocation,
|
|
invocation_output,
|
|
)
|
|
from invokeai.app.invocations.primitives import ImageField, ImageOutput
|
|
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
|
|
from invokeai.backend.tiles.tiles import calc_tiles_with_overlap, merge_tiles_with_linear_blending
|
|
from invokeai.backend.tiles.utils import Tile
|
|
|
|
|
|
class TileWithImage(BaseModel):
|
|
tile: Tile
|
|
image: ImageField
|
|
|
|
|
|
@invocation_output("calculate_image_tiles_output")
|
|
class CalculateImageTilesOutput(BaseInvocationOutput):
|
|
tiles: list[Tile] = OutputField(description="The tiles coordinates that cover a particular image shape.")
|
|
|
|
|
|
@invocation("calculate_image_tiles", title="Calculate Image Tiles", tags=["tiles"], category="tiles", version="1.0.0")
|
|
class CalculateImageTilesInvocation(BaseInvocation):
|
|
"""Calculate the coordinates and overlaps of tiles that cover a target image shape."""
|
|
|
|
image_width: int = InputField(ge=1, default=1024, description="The image width, in pixels, to calculate tiles for.")
|
|
image_height: int = InputField(
|
|
ge=1, default=1024, description="The image height, in pixels, to calculate tiles for."
|
|
)
|
|
tile_width: int = InputField(ge=1, default=576, description="The tile width, in pixels.")
|
|
tile_height: int = InputField(ge=1, default=576, description="The tile height, in pixels.")
|
|
overlap: int = InputField(
|
|
ge=0,
|
|
default=128,
|
|
description="The target overlap, in pixels, between adjacent tiles. Adjacent tiles will overlap by at least this amount",
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> CalculateImageTilesOutput:
|
|
tiles = calc_tiles_with_overlap(
|
|
image_height=self.image_height,
|
|
image_width=self.image_width,
|
|
tile_height=self.tile_height,
|
|
tile_width=self.tile_width,
|
|
overlap=self.overlap,
|
|
)
|
|
return CalculateImageTilesOutput(tiles=tiles)
|
|
|
|
|
|
@invocation_output("tile_to_properties_output")
|
|
class TileToPropertiesOutput(BaseInvocationOutput):
|
|
coords_top: int = OutputField(description="Top coordinate of the tile relative to its parent image.")
|
|
coords_bottom: int = OutputField(description="Bottom coordinate of the tile relative to its parent image.")
|
|
coords_left: int = OutputField(description="Left coordinate of the tile relative to its parent image.")
|
|
coords_right: int = OutputField(description="Right coordinate of the tile relative to its parent image.")
|
|
|
|
overlap_top: int = OutputField(description="Overlap between this tile and its top neighbor.")
|
|
overlap_bottom: int = OutputField(description="Overlap between this tile and its bottom neighbor.")
|
|
overlap_left: int = OutputField(description="Overlap between this tile and its left neighbor.")
|
|
overlap_right: int = OutputField(description="Overlap between this tile and its right neighbor.")
|
|
|
|
|
|
@invocation("tile_to_properties", title="Tile to Properties", tags=["tiles"], category="tiles", version="1.0.0")
|
|
class TileToPropertiesInvocation(BaseInvocation):
|
|
"""Split a Tile into its individual properties."""
|
|
|
|
tile: Tile = InputField(description="The tile to split into properties.")
|
|
|
|
def invoke(self, context: InvocationContext) -> TileToPropertiesOutput:
|
|
return TileToPropertiesOutput(
|
|
coords_top=self.tile.coords.top,
|
|
coords_bottom=self.tile.coords.bottom,
|
|
coords_left=self.tile.coords.left,
|
|
coords_right=self.tile.coords.right,
|
|
overlap_top=self.tile.overlap.top,
|
|
overlap_bottom=self.tile.overlap.bottom,
|
|
overlap_left=self.tile.overlap.left,
|
|
overlap_right=self.tile.overlap.right,
|
|
)
|
|
|
|
|
|
@invocation_output("pair_tile_image_output")
|
|
class PairTileImageOutput(BaseInvocationOutput):
|
|
tile_with_image: TileWithImage = OutputField(description="A tile description with its corresponding image.")
|
|
|
|
|
|
@invocation("pair_tile_image", title="Pair Tile with Image", tags=["tiles"], category="tiles", version="1.0.0")
|
|
class PairTileImageInvocation(BaseInvocation):
|
|
"""Pair an image with its tile properties."""
|
|
|
|
# TODO(ryand): The only reason that PairTileImage is needed is because the iterate/collect nodes don't preserve
|
|
# order. Can this be fixed?
|
|
|
|
image: ImageField = InputField(description="The tile image.")
|
|
tile: Tile = InputField(description="The tile properties.")
|
|
|
|
def invoke(self, context: InvocationContext) -> PairTileImageOutput:
|
|
return PairTileImageOutput(
|
|
tile_with_image=TileWithImage(
|
|
tile=self.tile,
|
|
image=self.image,
|
|
)
|
|
)
|
|
|
|
|
|
@invocation("merge_tiles_to_image", title="Merge Tiles to Image", tags=["tiles"], category="tiles", version="1.0.0")
|
|
class MergeTilesToImageInvocation(BaseInvocation, WithMetadata, WithWorkflow):
|
|
"""Merge multiple tile images into a single image."""
|
|
|
|
# Inputs
|
|
image_width: int = InputField(ge=1, description="The width of the output image, in pixels.")
|
|
image_height: int = InputField(ge=1, description="The height of the output image, in pixels.")
|
|
tiles_with_images: list[TileWithImage] = InputField(description="A list of tile images with tile properties.")
|
|
blend_amount: int = InputField(
|
|
ge=0,
|
|
description="The amount to blend adjacent tiles in pixels. Must be <= the amount of overlap between adjacent tiles.",
|
|
)
|
|
|
|
def invoke(self, context: InvocationContext) -> ImageOutput:
|
|
images = [twi.image for twi in self.tiles_with_images]
|
|
tiles = [twi.tile for twi in self.tiles_with_images]
|
|
|
|
# Get all tile images for processing.
|
|
# TODO(ryand): It pains me that we spend time PNG decoding each tile from disk when they almost certainly
|
|
# existed in memory at an earlier point in the graph.
|
|
tile_np_images: list[np.ndarray] = []
|
|
for image in images:
|
|
pil_image = context.services.images.get_pil_image(image.image_name)
|
|
pil_image = pil_image.convert("RGB")
|
|
tile_np_images.append(np.array(pil_image))
|
|
|
|
# Prepare the output image buffer.
|
|
# Check the first tile to determine how many image channels are expected in the output.
|
|
channels = tile_np_images[0].shape[-1]
|
|
dtype = tile_np_images[0].dtype
|
|
np_image = np.zeros(shape=(self.image_height, self.image_width, channels), dtype=dtype)
|
|
|
|
merge_tiles_with_linear_blending(
|
|
dst_image=np_image, tiles=tiles, tile_images=tile_np_images, blend_amount=self.blend_amount
|
|
)
|
|
pil_image = Image.fromarray(np_image)
|
|
|
|
image_dto = context.services.images.create(
|
|
image=pil_image,
|
|
image_origin=ResourceOrigin.INTERNAL,
|
|
image_category=ImageCategory.GENERAL,
|
|
node_id=self.id,
|
|
session_id=context.graph_execution_state_id,
|
|
is_intermediate=self.is_intermediate,
|
|
metadata=self.metadata,
|
|
workflow=self.workflow,
|
|
)
|
|
return ImageOutput(
|
|
image=ImageField(image_name=image_dto.image_name),
|
|
width=image_dto.width,
|
|
height=image_dto.height,
|
|
)
|