mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
213 lines
9.8 KiB
Python
213 lines
9.8 KiB
Python
import json
|
|
import base64
|
|
import mimetypes
|
|
import os
|
|
from http.server import BaseHTTPRequestHandler, ThreadingHTTPServer
|
|
from ldm.dream.pngwriter import PngWriter
|
|
from threading import Event
|
|
|
|
class CanceledException(Exception):
|
|
pass
|
|
|
|
class DreamServer(BaseHTTPRequestHandler):
|
|
model = None
|
|
outdir = None
|
|
canceled = Event()
|
|
|
|
def do_GET(self):
|
|
if self.path == "/":
|
|
self.send_response(200)
|
|
self.send_header("Content-type", "text/html")
|
|
self.end_headers()
|
|
with open("./static/dream_web/index.html", "rb") as content:
|
|
self.wfile.write(content.read())
|
|
elif self.path == "/config.js":
|
|
# unfortunately this import can't be at the top level, since that would cause a circular import
|
|
from ldm.gfpgan.gfpgan_tools import gfpgan_model_exists
|
|
self.send_response(200)
|
|
self.send_header("Content-type", "application/javascript")
|
|
self.end_headers()
|
|
config = {
|
|
'gfpgan_model_exists': gfpgan_model_exists
|
|
}
|
|
self.wfile.write(bytes("let config = " + json.dumps(config) + ";\n", "utf-8"))
|
|
elif self.path == "/cancel":
|
|
self.canceled.set()
|
|
self.send_response(200)
|
|
self.send_header("Content-type", "application/json")
|
|
self.end_headers()
|
|
self.wfile.write(bytes('{}', 'utf8'))
|
|
else:
|
|
path = "." + self.path
|
|
cwd = os.path.realpath(os.getcwd())
|
|
is_in_cwd = os.path.commonprefix((os.path.realpath(path), cwd)) == cwd
|
|
if not (is_in_cwd and os.path.exists(path)):
|
|
self.send_response(404)
|
|
return
|
|
mime_type = mimetypes.guess_type(path)[0]
|
|
if mime_type is not None:
|
|
self.send_response(200)
|
|
self.send_header("Content-type", mime_type)
|
|
self.end_headers()
|
|
with open("." + self.path, "rb") as content:
|
|
self.wfile.write(content.read())
|
|
else:
|
|
self.send_response(404)
|
|
|
|
def do_POST(self):
|
|
self.send_response(200)
|
|
self.send_header("Content-type", "application/json")
|
|
self.end_headers()
|
|
|
|
# unfortunately this import can't be at the top level, since that would cause a circular import
|
|
from ldm.gfpgan.gfpgan_tools import gfpgan_model_exists
|
|
|
|
content_length = int(self.headers['Content-Length'])
|
|
post_data = json.loads(self.rfile.read(content_length))
|
|
prompt = post_data['prompt']
|
|
initimg = post_data['initimg']
|
|
strength = float(post_data['strength'])
|
|
iterations = int(post_data['iterations'])
|
|
steps = int(post_data['steps'])
|
|
width = int(post_data['width'])
|
|
height = int(post_data['height'])
|
|
fit = 'fit' in post_data
|
|
seamless = 'seamless' in post_data
|
|
cfgscale = float(post_data['cfgscale'])
|
|
sampler_name = post_data['sampler']
|
|
gfpgan_strength = float(post_data['gfpgan_strength']) if gfpgan_model_exists else 0
|
|
upscale_level = post_data['upscale_level']
|
|
upscale_strength = post_data['upscale_strength']
|
|
upscale = [int(upscale_level),float(upscale_strength)] if upscale_level != '' else None
|
|
progress_images = 'progress_images' in post_data
|
|
seed = self.model.seed if int(post_data['seed']) == -1 else int(post_data['seed'])
|
|
threshold = float(post_data['threshold'])
|
|
perlin = float(post_data['perlin'])
|
|
|
|
self.canceled.clear()
|
|
print(f">> Request to generate with prompt: {prompt}")
|
|
# In order to handle upscaled images, the PngWriter needs to maintain state
|
|
# across images generated by each call to prompt2img(), so we define it in
|
|
# the outer scope of image_done()
|
|
config = post_data.copy() # Shallow copy
|
|
config['initimg'] = config.pop('initimg_name','')
|
|
|
|
images_generated = 0 # helps keep track of when upscaling is started
|
|
images_upscaled = 0 # helps keep track of when upscaling is completed
|
|
pngwriter = PngWriter(self.outdir)
|
|
|
|
prefix = pngwriter.unique_prefix()
|
|
# if upscaling is requested, then this will be called twice, once when
|
|
# the images are first generated, and then again when after upscaling
|
|
# is complete. The upscaling replaces the original file, so the second
|
|
# entry should not be inserted into the image list.
|
|
def image_done(image, seed, upscaled=False):
|
|
name = f'{prefix}.{seed}.png'
|
|
path = pngwriter.save_image_and_prompt_to_png(image, f'{prompt} -S{seed}', name)
|
|
|
|
# Append post_data to log, but only once!
|
|
if not upscaled:
|
|
with open(os.path.join(self.outdir, "dream_web_log.txt"), "a") as log:
|
|
log.write(f"{path}: {json.dumps(config)}\n")
|
|
|
|
self.wfile.write(bytes(json.dumps(
|
|
{'event': 'result', 'url': path, 'seed': seed, 'config': config}
|
|
) + '\n',"utf-8"))
|
|
|
|
# control state of the "postprocessing..." message
|
|
upscaling_requested = upscale or gfpgan_strength>0
|
|
nonlocal images_generated # NB: Is this bad python style? It is typical usage in a perl closure.
|
|
nonlocal images_upscaled # NB: Is this bad python style? It is typical usage in a perl closure.
|
|
if upscaled:
|
|
images_upscaled += 1
|
|
else:
|
|
images_generated +=1
|
|
if upscaling_requested:
|
|
action = None
|
|
if images_generated >= iterations:
|
|
if images_upscaled < iterations:
|
|
action = 'upscaling-started'
|
|
else:
|
|
action = 'upscaling-done'
|
|
if action:
|
|
x = images_upscaled+1
|
|
self.wfile.write(bytes(json.dumps(
|
|
{'event':action,'processed_file_cnt':f'{x}/{iterations}'}
|
|
) + '\n',"utf-8"))
|
|
|
|
step_writer = PngWriter(os.path.join(self.outdir, "intermediates"))
|
|
step_index = 1
|
|
def image_progress(sample, step):
|
|
if self.canceled.is_set():
|
|
self.wfile.write(bytes(json.dumps({'event':'canceled'}) + '\n', 'utf-8'))
|
|
raise CanceledException
|
|
path = None
|
|
# since rendering images is moderately expensive, only render every 5th image
|
|
# and don't bother with the last one, since it'll render anyway
|
|
nonlocal step_index
|
|
if progress_images and step % 5 == 0 and step < steps - 1:
|
|
image = self.model.sample_to_image(sample)
|
|
name = f'{prefix}.{seed}.{step_index}.png'
|
|
metadata = f'{prompt} -S{seed} [intermediate]'
|
|
path = step_writer.save_image_and_prompt_to_png(image, metadata, name)
|
|
step_index += 1
|
|
self.wfile.write(bytes(json.dumps(
|
|
{'event': 'step', 'step': step + 1, 'url': path}
|
|
) + '\n',"utf-8"))
|
|
|
|
try:
|
|
if initimg is None:
|
|
# Run txt2img
|
|
self.model.prompt2image(prompt,
|
|
iterations=iterations,
|
|
cfg_scale = cfgscale,
|
|
width = width,
|
|
height = height,
|
|
seed = seed,
|
|
steps = steps,
|
|
gfpgan_strength = gfpgan_strength,
|
|
upscale = upscale,
|
|
sampler_name = sampler_name,
|
|
seamless = seamless,
|
|
step_callback=image_progress,
|
|
image_callback=image_done,
|
|
threshold=threshold,
|
|
perlin=perlin)
|
|
else:
|
|
# Decode initimg as base64 to temp file
|
|
with open("./img2img-tmp.png", "wb") as f:
|
|
initimg = initimg.split(",")[1] # Ignore mime type
|
|
f.write(base64.b64decode(initimg))
|
|
|
|
try:
|
|
# Run img2img
|
|
self.model.prompt2image(prompt,
|
|
init_img = "./img2img-tmp.png",
|
|
strength = strength,
|
|
iterations = iterations,
|
|
cfg_scale = cfgscale,
|
|
seed = seed,
|
|
steps = steps,
|
|
sampler_name = sampler_name,
|
|
width = width,
|
|
height = height,
|
|
fit = fit,
|
|
seamless = seamless,
|
|
gfpgan_strength=gfpgan_strength,
|
|
upscale = upscale,
|
|
step_callback=image_progress,
|
|
image_callback=image_done,
|
|
threshold=threshold,
|
|
perlin=perlin)
|
|
finally:
|
|
# Remove the temp file
|
|
os.remove("./img2img-tmp.png")
|
|
except CanceledException:
|
|
print(f"Canceled.")
|
|
return
|
|
|
|
|
|
class ThreadingDreamServer(ThreadingHTTPServer):
|
|
def __init__(self, server_address):
|
|
super(ThreadingDreamServer, self).__init__(server_address, DreamServer)
|