mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
351 lines
13 KiB
Python
351 lines
13 KiB
Python
from inspect import isfunction
|
|
import math
|
|
from typing import Callable
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn, einsum
|
|
from einops import rearrange, repeat
|
|
|
|
from ldm.modules.diffusionmodules.util import checkpoint
|
|
|
|
import psutil
|
|
|
|
def exists(val):
|
|
return val is not None
|
|
|
|
|
|
def uniq(arr):
|
|
return{el: True for el in arr}.keys()
|
|
|
|
|
|
def default(val, d):
|
|
if exists(val):
|
|
return val
|
|
return d() if isfunction(d) else d
|
|
|
|
|
|
def max_neg_value(t):
|
|
return -torch.finfo(t.dtype).max
|
|
|
|
|
|
def init_(tensor):
|
|
dim = tensor.shape[-1]
|
|
std = 1 / math.sqrt(dim)
|
|
tensor.uniform_(-std, std)
|
|
return tensor
|
|
|
|
|
|
# feedforward
|
|
class GEGLU(nn.Module):
|
|
def __init__(self, dim_in, dim_out):
|
|
super().__init__()
|
|
self.proj = nn.Linear(dim_in, dim_out * 2)
|
|
|
|
def forward(self, x):
|
|
x, gate = self.proj(x).chunk(2, dim=-1)
|
|
return x * F.gelu(gate)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
|
|
super().__init__()
|
|
inner_dim = int(dim * mult)
|
|
dim_out = default(dim_out, dim)
|
|
project_in = nn.Sequential(
|
|
nn.Linear(dim, inner_dim),
|
|
nn.GELU()
|
|
) if not glu else GEGLU(dim, inner_dim)
|
|
|
|
self.net = nn.Sequential(
|
|
project_in,
|
|
nn.Dropout(dropout),
|
|
nn.Linear(inner_dim, dim_out)
|
|
)
|
|
|
|
def forward(self, x):
|
|
return self.net(x)
|
|
|
|
|
|
def zero_module(module):
|
|
"""
|
|
Zero out the parameters of a module and return it.
|
|
"""
|
|
for p in module.parameters():
|
|
p.detach().zero_()
|
|
return module
|
|
|
|
|
|
def Normalize(in_channels):
|
|
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
|
|
|
|
|
|
class LinearAttention(nn.Module):
|
|
def __init__(self, dim, heads=4, dim_head=32):
|
|
super().__init__()
|
|
self.heads = heads
|
|
hidden_dim = dim_head * heads
|
|
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
|
|
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
|
|
|
|
def forward(self, x):
|
|
b, c, h, w = x.shape
|
|
qkv = self.to_qkv(x)
|
|
q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
|
|
k = k.softmax(dim=-1)
|
|
context = torch.einsum('bhdn,bhen->bhde', k, v)
|
|
out = torch.einsum('bhde,bhdn->bhen', context, q)
|
|
out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
|
|
return self.to_out(out)
|
|
|
|
|
|
class SpatialSelfAttention(nn.Module):
|
|
def __init__(self, in_channels):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels)
|
|
self.q = torch.nn.Conv2d(in_channels,
|
|
in_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.k = torch.nn.Conv2d(in_channels,
|
|
in_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.v = torch.nn.Conv2d(in_channels,
|
|
in_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
self.proj_out = torch.nn.Conv2d(in_channels,
|
|
in_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
|
|
def forward(self, x):
|
|
h_ = x
|
|
h_ = self.norm(h_)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
# compute attention
|
|
b,c,h,w = q.shape
|
|
q = rearrange(q, 'b c h w -> b (h w) c')
|
|
k = rearrange(k, 'b c h w -> b c (h w)')
|
|
w_ = torch.einsum('bij,bjk->bik', q, k)
|
|
|
|
w_ = w_ * (int(c)**(-0.5))
|
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
|
|
|
# attend to values
|
|
v = rearrange(v, 'b c h w -> b c (h w)')
|
|
w_ = rearrange(w_, 'b i j -> b j i')
|
|
h_ = torch.einsum('bij,bjk->bik', v, w_)
|
|
h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
|
|
h_ = self.proj_out(h_)
|
|
|
|
return x+h_
|
|
|
|
|
|
|
|
class CrossAttention(nn.Module):
|
|
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
|
|
super().__init__()
|
|
inner_dim = dim_head * heads
|
|
context_dim = default(context_dim, query_dim)
|
|
|
|
self.scale = dim_head ** -0.5
|
|
self.heads = heads
|
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
|
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
|
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
|
|
|
self.to_out = nn.Sequential(
|
|
nn.Linear(inner_dim, query_dim),
|
|
nn.Dropout(dropout)
|
|
)
|
|
|
|
self.mem_total_gb = psutil.virtual_memory().total // (1 << 30)
|
|
|
|
self.attention_slice_wrangler = None
|
|
|
|
def set_attention_slice_wrangler(self, wrangler:Callable[[nn.Module, torch.Tensor, torch.Tensor, int, int, int], torch.Tensor]):
|
|
'''
|
|
Set custom attention calculator to be called when attention is calculated
|
|
:param wrangler: Callback, with args (self, attention_scores, suggested_attention_slice, dim, offset, slice_size),
|
|
which returns either the suggested_attention_slice or an adjusted equivalent.
|
|
self is the current CrossAttention module for which the callback is being invoked.
|
|
attention_scores are the scores for attention
|
|
suggested_attention_slice is a softmax(dim=-1) over attention_scores
|
|
dim is -1 if the call is non-sliced, or 0 or 1 for dimension-0 or dimension-1 slicing.
|
|
If dim is >= 0, offset and slice_size specify the slice start and length.
|
|
|
|
Pass None to use the default attention calculation.
|
|
:return:
|
|
'''
|
|
self.attention_slice_wrangler = wrangler
|
|
|
|
def einsum_lowest_level(self, q, k, v, dim, offset, slice_size):
|
|
# calculate attention scores
|
|
attention_scores = einsum('b i d, b j d -> b i j', q, k)
|
|
# calculate attenion slice by taking the best scores for each latent pixel
|
|
default_attention_slice = attention_scores.softmax(dim=-1, dtype=attention_scores.dtype)
|
|
if self.attention_slice_wrangler is not None:
|
|
attention_slice = self.attention_slice_wrangler(self, attention_scores, default_attention_slice, dim, offset, slice_size)
|
|
else:
|
|
attention_slice = default_attention_slice
|
|
|
|
return einsum('b i j, b j d -> b i d', attention_slice, v)
|
|
|
|
def einsum_op_slice_dim0(self, q, k, v, slice_size):
|
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
|
for i in range(0, q.shape[0], slice_size):
|
|
end = i + slice_size
|
|
r[i:end] = self.einsum_lowest_level(q[i:end], k[i:end], v[i:end], dim=0, offset=i, slice_size=slice_size)
|
|
return r
|
|
|
|
def einsum_op_slice_dim1(self, q, k, v, slice_size):
|
|
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
|
for i in range(0, q.shape[1], slice_size):
|
|
end = i + slice_size
|
|
r[:, i:end] = self.einsum_lowest_level(q[:, i:end], k, v, dim=1, offset=i, slice_size=slice_size)
|
|
return r
|
|
|
|
def einsum_op_mps_v1(self, q, k, v):
|
|
if q.shape[1] <= 4096: # (512x512) max q.shape[1]: 4096
|
|
return self.einsum_lowest_level(q, k, v, None, None, None)
|
|
else:
|
|
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
|
|
return self.einsum_op_slice_dim1(q, k, v, slice_size)
|
|
|
|
def einsum_op_mps_v2(self, q, k, v):
|
|
if self.mem_total_gb > 8 and q.shape[1] <= 4096:
|
|
return self.einsum_lowest_level(q, k, v, None, None, None)
|
|
else:
|
|
return self.einsum_op_slice_dim0(q, k, v, 1)
|
|
|
|
def einsum_op_tensor_mem(self, q, k, v, max_tensor_mb):
|
|
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
|
|
if size_mb <= max_tensor_mb:
|
|
return self.einsum_lowest_level(q, k, v, None, None, None)
|
|
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
|
|
if div <= q.shape[0]:
|
|
return self.einsum_op_slice_dim0(q, k, v, q.shape[0] // div)
|
|
return self.einsum_op_slice_dim1(q, k, v, max(q.shape[1] // div, 1))
|
|
|
|
def einsum_op_cuda(self, q, k, v):
|
|
stats = torch.cuda.memory_stats(q.device)
|
|
mem_active = stats['active_bytes.all.current']
|
|
mem_reserved = stats['reserved_bytes.all.current']
|
|
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
|
|
mem_free_torch = mem_reserved - mem_active
|
|
mem_free_total = mem_free_cuda + mem_free_torch
|
|
# Divide factor of safety as there's copying and fragmentation
|
|
return self.einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
|
|
|
|
def get_attention_mem_efficient(self, q, k, v):
|
|
if q.device.type == 'cuda':
|
|
return self.einsum_op_cuda(q, k, v)
|
|
|
|
if q.device.type == 'mps':
|
|
if self.mem_total_gb >= 32:
|
|
return self.einsum_op_mps_v1(q, k, v)
|
|
return self.einsum_op_mps_v2(q, k, v)
|
|
|
|
# Smaller slices are faster due to L2/L3/SLC caches.
|
|
# Tested on i7 with 8MB L3 cache.
|
|
return self.einsum_op_tensor_mem(q, k, v, 32)
|
|
|
|
def forward(self, x, context=None, mask=None):
|
|
h = self.heads
|
|
|
|
q = self.to_q(x)
|
|
context = default(context, x)
|
|
k = self.to_k(context) * self.scale
|
|
v = self.to_v(context)
|
|
del context, x
|
|
|
|
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
|
|
|
r = self.get_attention_mem_efficient(q, k, v)
|
|
|
|
hidden_states = rearrange(r, '(b h) n d -> b n (h d)', h=h)
|
|
return self.to_out(hidden_states)
|
|
|
|
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
|
|
super().__init__()
|
|
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
|
|
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
|
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
|
|
heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
|
|
self.norm1 = nn.LayerNorm(dim)
|
|
self.norm2 = nn.LayerNorm(dim)
|
|
self.norm3 = nn.LayerNorm(dim)
|
|
self.checkpoint = checkpoint
|
|
|
|
def forward(self, x, context=None):
|
|
return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
|
|
|
|
def _forward(self, x, context=None):
|
|
x = x.contiguous() if x.device.type == 'mps' else x
|
|
x += self.attn1(self.norm1(x.clone()))
|
|
x += self.attn2(self.norm2(x.clone()), context=context)
|
|
x += self.ff(self.norm3(x.clone()))
|
|
return x
|
|
|
|
|
|
class SpatialTransformer(nn.Module):
|
|
"""
|
|
Transformer block for image-like data.
|
|
First, project the input (aka embedding)
|
|
and reshape to b, t, d.
|
|
Then apply standard transformer action.
|
|
Finally, reshape to image
|
|
"""
|
|
def __init__(self, in_channels, n_heads, d_head,
|
|
depth=1, dropout=0., context_dim=None):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
inner_dim = n_heads * d_head
|
|
self.norm = Normalize(in_channels)
|
|
|
|
self.proj_in = nn.Conv2d(in_channels,
|
|
inner_dim,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0)
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
|
for d in range(depth)]
|
|
)
|
|
|
|
self.proj_out = zero_module(nn.Conv2d(inner_dim,
|
|
in_channels,
|
|
kernel_size=1,
|
|
stride=1,
|
|
padding=0))
|
|
|
|
def forward(self, x, context=None):
|
|
# note: if no context is given, cross-attention defaults to self-attention
|
|
b, c, h, w = x.shape
|
|
x_in = x
|
|
x = self.norm(x)
|
|
x = self.proj_in(x)
|
|
x = rearrange(x, 'b c h w -> b (h w) c')
|
|
for block in self.transformer_blocks:
|
|
x = block(x, context=context)
|
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
|
x = self.proj_out(x)
|
|
return x + x_in
|