InvokeAI/ldm/invoke/app/services/generate_initializer.py
Kyle Schouviller 357601e2d6
parent 9eed1919c2
author Kyle Schouviller <kyle0654@hotmail.com> 1669872800 -0800
committer Kyle Schouviller <kyle0654@hotmail.com> 1676240900 -0800

Adding base node architecture

Fix type annotation errors

Runs and generates, but breaks in saving session

Fix default model value setting. Fix deprecation warning.

Fixed node api

Adding markdown docs

Simplifying Generate construction in apps

[nodes] A few minor changes (#2510)

* Pin api-related requirements

* Remove confusing extra CORS origins list

* Adds response models for HTTP 200

[nodes] Adding graph_execution_state to soon replace session. Adding tests with pytest.

Minor typing fixes

[nodes] Fix some small output query hookups

[node] Fixing some additional typing issues

[nodes] Move and expand graph code. Add base item storage and sqlite implementation.

Update startup to match new code

[nodes] Add callbacks to item storage

[nodes] Adding an InvocationContext object to use for invocations to provide easier extensibility

[nodes] New execution model that handles iteration

[nodes] Fixing the CLI

[nodes] Adding a note to the CLI

[nodes] Split processing thread into separate service

[node] Add error message on node processing failure

Removing old files and duplicated packages

Adding python-multipart
2023-02-26 21:28:00 +01:00

234 lines
8.4 KiB
Python

from argparse import Namespace
import os
import sys
import traceback
from ...model_manager import ModelManager
from ...globals import Globals
from ....generate import Generate
import ldm.invoke
# TODO: most of this code should be split into individual services as the Generate.py code is deprecated
def get_generate(args, config) -> Generate:
if not args.conf:
config_file = os.path.join(Globals.root,'configs','models.yaml')
if not os.path.exists(config_file):
report_model_error(args, FileNotFoundError(f"The file {config_file} could not be found."))
print(f'>> {ldm.invoke.__app_name__}, version {ldm.invoke.__version__}')
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers # type: ignore
transformers.logging.set_verbosity_error()
import diffusers
diffusers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan,codeformer,esrgan = load_face_restoration(args)
# normalize the config directory relative to root
if not os.path.isabs(args.conf):
args.conf = os.path.normpath(os.path.join(Globals.root,args.conf))
if args.embeddings:
if not os.path.isabs(args.embedding_path):
embedding_path = os.path.normpath(os.path.join(Globals.root,args.embedding_path))
else:
embedding_path = args.embedding_path
else:
embedding_path = None
# migrate legacy models
ModelManager.migrate_models()
# load the infile as a list of lines
if args.infile:
try:
if os.path.isfile(args.infile):
infile = open(args.infile, 'r', encoding='utf-8')
elif args.infile == '-': # stdin
infile = sys.stdin
else:
raise FileNotFoundError(f'{args.infile} not found.')
except (FileNotFoundError, IOError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
# creating a Generate object:
try:
gen = Generate(
conf = args.conf,
model = args.model,
sampler_name = args.sampler_name,
embedding_path = embedding_path,
full_precision = args.full_precision,
precision = args.precision,
gfpgan = gfpgan,
codeformer = codeformer,
esrgan = esrgan,
free_gpu_mem = args.free_gpu_mem,
safety_checker = args.safety_checker,
max_loaded_models = args.max_loaded_models,
)
except (FileNotFoundError, TypeError, AssertionError) as e:
report_model_error(opt,e)
except (IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
if args.seamless:
print(">> changed to seamless tiling mode")
# preload the model
try:
gen.load_model()
except KeyError:
pass
except Exception as e:
report_model_error(args, e)
# try to autoconvert new models
# autoimport new .ckpt files
if path := args.autoconvert:
gen.model_manager.autoconvert_weights(
conf_path=args.conf,
weights_directory=path,
)
return gen
def load_face_restoration(opt):
try:
gfpgan, codeformer, esrgan = None, None, None
if opt.restore or opt.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if opt.restore:
gfpgan, codeformer = restoration.load_face_restore_models(opt.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if opt.esrgan:
esrgan = restoration.load_esrgan(opt.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
return gfpgan,codeformer,esrgan
def report_model_error(opt:Namespace, e:Exception):
print(f'** An error occurred while attempting to initialize the model: "{str(e)}"')
print('** This can be caused by a missing or corrupted models file, and can sometimes be fixed by (re)installing the models.')
yes_to_all = os.environ.get('INVOKE_MODEL_RECONFIGURE')
if yes_to_all:
print('** Reconfiguration is being forced by environment variable INVOKE_MODEL_RECONFIGURE')
else:
response = input('Do you want to run invokeai-configure script to select and/or reinstall models? [y] ')
if response.startswith(('n', 'N')):
return
print('invokeai-configure is launching....\n')
# Match arguments that were set on the CLI
# only the arguments accepted by the configuration script are parsed
root_dir = ["--root", opt.root_dir] if opt.root_dir is not None else []
config = ["--config", opt.conf] if opt.conf is not None else []
previous_args = sys.argv
sys.argv = [ 'invokeai-configure' ]
sys.argv.extend(root_dir)
sys.argv.extend(config)
if yes_to_all is not None:
for arg in yes_to_all.split():
sys.argv.append(arg)
from ldm.invoke.config import invokeai_configure
invokeai_configure.main()
# TODO: Figure out how to restart
# print('** InvokeAI will now restart')
# sys.argv = previous_args
# main() # would rather do a os.exec(), but doesn't exist?
# sys.exit(0)
# Temporary initializer for Generate until we migrate off of it
def old_get_generate(args, config) -> Generate:
# TODO: Remove the need for globals
from ldm.invoke.globals import Globals
# alert - setting globals here
Globals.root = os.path.expanduser(args.root_dir or os.environ.get('INVOKEAI_ROOT') or os.path.abspath('.'))
Globals.try_patchmatch = args.patchmatch
print(f'>> InvokeAI runtime directory is "{Globals.root}"')
# these two lines prevent a horrible warning message from appearing
# when the frozen CLIP tokenizer is imported
import transformers
transformers.logging.set_verbosity_error()
# Loading Face Restoration and ESRGAN Modules
gfpgan, codeformer, esrgan = None, None, None
try:
if config.restore or config.esrgan:
from ldm.invoke.restoration import Restoration
restoration = Restoration()
if config.restore:
gfpgan, codeformer = restoration.load_face_restore_models(config.gfpgan_model_path)
else:
print('>> Face restoration disabled')
if config.esrgan:
esrgan = restoration.load_esrgan(config.esrgan_bg_tile)
else:
print('>> Upscaling disabled')
else:
print('>> Face restoration and upscaling disabled')
except (ModuleNotFoundError, ImportError):
print(traceback.format_exc(), file=sys.stderr)
print('>> You may need to install the ESRGAN and/or GFPGAN modules')
# normalize the config directory relative to root
if not os.path.isabs(config.conf):
config.conf = os.path.normpath(os.path.join(Globals.root,config.conf))
if config.embeddings:
if not os.path.isabs(config.embedding_path):
embedding_path = os.path.normpath(os.path.join(Globals.root,config.embedding_path))
else:
embedding_path = None
# TODO: lazy-initialize this by wrapping it
try:
generate = Generate(
conf = config.conf,
model = config.model,
sampler_name = config.sampler_name,
embedding_path = embedding_path,
full_precision = config.full_precision,
precision = config.precision,
gfpgan = gfpgan,
codeformer = codeformer,
esrgan = esrgan,
free_gpu_mem = config.free_gpu_mem,
safety_checker = config.safety_checker,
max_loaded_models = config.max_loaded_models,
)
except (FileNotFoundError, TypeError, AssertionError):
#emergency_model_reconfigure() # TODO?
sys.exit(-1)
except (IOError, KeyError) as e:
print(f'{e}. Aborting.')
sys.exit(-1)
generate.free_gpu_mem = config.free_gpu_mem
return generate