mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
78f7bef1a3
This reverts commit 48aa6416dc
.
668 lines
29 KiB
Python
668 lines
29 KiB
Python
import string
|
|
from typing import Union, Optional
|
|
import re
|
|
import pyparsing as pp
|
|
'''
|
|
This module parses prompt strings and produces tree-like structures that can be used generate and control the conditioning tensors.
|
|
weighted subprompts.
|
|
|
|
Useful class exports:
|
|
|
|
PromptParser - parses prompts
|
|
|
|
Useful function exports:
|
|
|
|
split_weighted_subpromopts() split subprompts, normalize and weight them
|
|
log_tokenization() print out colour-coded tokens and warn if truncated
|
|
'''
|
|
|
|
class Prompt():
|
|
"""
|
|
Mid-level structure for storing the tree-like result of parsing a prompt. A Prompt may not represent the whole of
|
|
the singular user-defined "prompt string" (although it can) - for example, if the user specifies a Blend, the objects
|
|
that are to be blended together are stored individuall as Prompt objects.
|
|
|
|
Nesting makes this object not suitable for directly tokenizing; instead call flatten() on the containing Conjunction
|
|
to produce a FlattenedPrompt.
|
|
"""
|
|
def __init__(self, parts: list):
|
|
for c in parts:
|
|
if type(c) is not Attention and not issubclass(type(c), BaseFragment) and type(c) is not pp.ParseResults:
|
|
raise PromptParser.ParsingException(f"Prompt cannot contain {type(c).__name__} ({c}), only {[c.__name__ for c in BaseFragment.__subclasses__()]} are allowed")
|
|
self.children = parts
|
|
def __repr__(self):
|
|
return f"Prompt:{self.children}"
|
|
def __eq__(self, other):
|
|
return type(other) is Prompt and other.children == self.children
|
|
|
|
class BaseFragment:
|
|
pass
|
|
|
|
class FlattenedPrompt():
|
|
"""
|
|
A Prompt that has been passed through flatten(). Its children can be readily tokenized.
|
|
"""
|
|
def __init__(self, parts: list=[]):
|
|
self.children = []
|
|
for part in parts:
|
|
self.append(part)
|
|
|
|
def append(self, fragment: Union[list, BaseFragment, tuple]):
|
|
# verify type correctness
|
|
if type(fragment) is list:
|
|
for x in fragment:
|
|
self.append(x)
|
|
elif issubclass(type(fragment), BaseFragment):
|
|
self.children.append(fragment)
|
|
elif type(fragment) is tuple:
|
|
# upgrade tuples to Fragments
|
|
if type(fragment[0]) is not str or (type(fragment[1]) is not float and type(fragment[1]) is not int):
|
|
raise PromptParser.ParsingException(
|
|
f"FlattenedPrompt cannot contain {fragment}, only Fragments or (str, float) tuples are allowed")
|
|
self.children.append(Fragment(fragment[0], fragment[1]))
|
|
else:
|
|
raise PromptParser.ParsingException(
|
|
f"FlattenedPrompt cannot contain {fragment}, only Fragments or (str, float) tuples are allowed")
|
|
|
|
@property
|
|
def is_empty(self):
|
|
return len(self.children) == 0 or \
|
|
(len(self.children) == 1 and len(self.children[0].text) == 0)
|
|
|
|
def __repr__(self):
|
|
return f"FlattenedPrompt:{self.children}"
|
|
def __eq__(self, other):
|
|
return type(other) is FlattenedPrompt and other.children == self.children
|
|
|
|
|
|
class Fragment(BaseFragment):
|
|
"""
|
|
A Fragment is a chunk of plain text and an optional weight. The text should be passed as-is to the CLIP tokenizer.
|
|
"""
|
|
def __init__(self, text: str, weight: float=1):
|
|
assert(type(text) is str)
|
|
if '\\"' in text or '\\(' in text or '\\)' in text:
|
|
#print("Fragment converting escaped \( \) \\\" into ( ) \"")
|
|
text = text.replace('\\(', '(').replace('\\)', ')').replace('\\"', '"')
|
|
self.text = text
|
|
self.weight = float(weight)
|
|
|
|
def __repr__(self):
|
|
return "Fragment:'"+self.text+"'@"+str(self.weight)
|
|
def __eq__(self, other):
|
|
return type(other) is Fragment \
|
|
and other.text == self.text \
|
|
and other.weight == self.weight
|
|
|
|
class Attention():
|
|
"""
|
|
Nestable weight control for fragments. Each object in the children array may in turn be an Attention object;
|
|
weights should be considered to accumulate as the tree is traversed to deeper levels of nesting.
|
|
|
|
Do not traverse directly; instead obtain a FlattenedPrompt by calling Flatten() on a top-level Conjunction object.
|
|
"""
|
|
def __init__(self, weight: float, children: list):
|
|
if type(weight) is not float:
|
|
raise PromptParser.ParsingException(
|
|
f"Attention weight must be float (got {type(weight).__name__} {weight})")
|
|
self.weight = weight
|
|
if type(children) is not list:
|
|
raise PromptParser.ParsingException(f"cannot make Attention with non-list of children (got {type(children)})")
|
|
assert(type(children) is list)
|
|
self.children = children
|
|
#print(f"A: requested attention '{children}' to {weight}")
|
|
|
|
def __repr__(self):
|
|
return f"Attention:{self.children} * {self.weight}"
|
|
def __eq__(self, other):
|
|
return type(other) is Attention and other.weight == self.weight and other.fragment == self.fragment
|
|
|
|
class CrossAttentionControlledFragment(BaseFragment):
|
|
pass
|
|
|
|
class CrossAttentionControlSubstitute(CrossAttentionControlledFragment):
|
|
"""
|
|
A Cross-Attention Controlled ('prompt2prompt') fragment, for use inside a Prompt, Attention, or FlattenedPrompt.
|
|
Representing an "original" word sequence that supplies feature vectors for an initial diffusion operation, and an
|
|
"edited" word sequence, to which the attention maps produced by the "original" word sequence are applied. Intuitively,
|
|
the result should be an "edited" image that looks like the "original" image with concepts swapped.
|
|
|
|
eg "a cat sitting on a car" (original) -> "a smiling dog sitting on a car" (edited): the edited image should look
|
|
almost exactly the same as the original, but with a smiling dog rendered in place of the cat. The
|
|
CrossAttentionControlSubstitute object representing this swap may be confined to the tokens being swapped:
|
|
CrossAttentionControlSubstitute(original=[Fragment('cat')], edited=[Fragment('dog')])
|
|
or it may represent a larger portion of the token sequence:
|
|
CrossAttentionControlSubstitute(original=[Fragment('a cat sitting on a car')],
|
|
edited=[Fragment('a smiling dog sitting on a car')])
|
|
|
|
In either case expect it to be embedded in a Prompt or FlattenedPrompt:
|
|
FlattenedPrompt([
|
|
Fragment('a'),
|
|
CrossAttentionControlSubstitute(original=[Fragment('cat')], edited=[Fragment('dog')]),
|
|
Fragment('sitting on a car')
|
|
])
|
|
"""
|
|
def __init__(self, original: list, edited: list, options: dict=None):
|
|
self.original = original if len(original)>0 else [Fragment('')]
|
|
self.edited = edited if len(edited)>0 else [Fragment('')]
|
|
|
|
default_options = {
|
|
's_start': 0.0,
|
|
's_end': 0.2062994740159002, # ~= shape_freedom=0.5
|
|
't_start': 0.0,
|
|
't_end': 1.0
|
|
}
|
|
merged_options = default_options
|
|
if options is not None:
|
|
shape_freedom = options.pop('shape_freedom', None)
|
|
if shape_freedom is not None:
|
|
# high shape freedom = SD can do what it wants with the shape of the object
|
|
# high shape freedom => s_end = 0
|
|
# low shape freedom => s_end = 1
|
|
# shape freedom is in a "linear" space, while noticeable changes to s_end are typically closer around 0,
|
|
# and there is very little perceptible difference as s_end increases above 0.5
|
|
# so for shape_freedom = 0.5 we probably want s_end to be 0.2
|
|
# -> cube root and subtract from 1.0
|
|
merged_options['s_end'] = 1.0 - shape_freedom ** (1. / 3.)
|
|
#print('converted shape_freedom argument to', merged_options)
|
|
merged_options.update(options)
|
|
|
|
self.options = merged_options
|
|
|
|
def __repr__(self):
|
|
return f"CrossAttentionControlSubstitute:({self.original}->{self.edited} ({self.options})"
|
|
def __eq__(self, other):
|
|
return type(other) is CrossAttentionControlSubstitute \
|
|
and other.original == self.original \
|
|
and other.edited == self.edited \
|
|
and other.options == self.options
|
|
|
|
|
|
class CrossAttentionControlAppend(CrossAttentionControlledFragment):
|
|
def __init__(self, fragment: Fragment):
|
|
self.fragment = fragment
|
|
def __repr__(self):
|
|
return "CrossAttentionControlAppend:",self.fragment
|
|
def __eq__(self, other):
|
|
return type(other) is CrossAttentionControlAppend \
|
|
and other.fragment == self.fragment
|
|
|
|
|
|
|
|
class Conjunction():
|
|
"""
|
|
Storage for one or more Prompts or Blends, each of which is to be separately diffused and then the results merged
|
|
by weighted sum in latent space.
|
|
"""
|
|
def __init__(self, prompts: list, weights: list = None):
|
|
# force everything to be a Prompt
|
|
#print("making conjunction with", prompts, "types", [type(p).__name__ for p in prompts])
|
|
self.prompts = [x if (type(x) is Prompt
|
|
or type(x) is Blend
|
|
or type(x) is FlattenedPrompt)
|
|
else Prompt(x) for x in prompts]
|
|
self.weights = [1.0]*len(self.prompts) if (weights is None or len(weights)==0) else list(weights)
|
|
if len(self.weights) != len(self.prompts):
|
|
raise PromptParser.ParsingException(f"while parsing Conjunction: mismatched parts/weights counts {prompts}, {weights}")
|
|
self.type = 'AND'
|
|
|
|
def __repr__(self):
|
|
return f"Conjunction:{self.prompts} | weights {self.weights}"
|
|
def __eq__(self, other):
|
|
return type(other) is Conjunction \
|
|
and other.prompts == self.prompts \
|
|
and other.weights == self.weights
|
|
|
|
|
|
class Blend():
|
|
"""
|
|
Stores a Blend of multiple Prompts. To apply, build feature vectors for each of the child Prompts and then perform a
|
|
weighted blend of the feature vectors to produce a single feature vector that is effectively a lerp between the
|
|
Prompts.
|
|
"""
|
|
def __init__(self, prompts: list, weights: list[float], normalize_weights: bool=True):
|
|
#print("making Blend with prompts", prompts, "and weights", weights)
|
|
weights = [1.0]*len(prompts) if (weights is None or len(weights)==0) else list(weights)
|
|
if len(prompts) != len(weights):
|
|
raise PromptParser.ParsingException(f"while parsing Blend: mismatched prompts/weights counts {prompts}, {weights}")
|
|
for p in prompts:
|
|
if type(p) is not Prompt and type(p) is not FlattenedPrompt:
|
|
raise(PromptParser.ParsingException(f"{type(p)} cannot be added to a Blend, only Prompts or FlattenedPrompts"))
|
|
for f in p.children:
|
|
if isinstance(f, CrossAttentionControlSubstitute):
|
|
raise(PromptParser.ParsingException(f"while parsing Blend: sorry, you cannot do .swap() as part of a Blend"))
|
|
|
|
# upcast all lists to Prompt objects
|
|
self.prompts = [x if (type(x) is Prompt or type(x) is FlattenedPrompt)
|
|
else Prompt(x)
|
|
for x in prompts]
|
|
self.prompts = prompts
|
|
self.weights = weights
|
|
self.normalize_weights = normalize_weights
|
|
|
|
def __repr__(self):
|
|
return f"Blend:{self.prompts} | weights {' ' if self.normalize_weights else '(non-normalized) '}{self.weights}"
|
|
def __eq__(self, other):
|
|
return other.__repr__() == self.__repr__()
|
|
|
|
|
|
class PromptParser():
|
|
|
|
class ParsingException(Exception):
|
|
pass
|
|
|
|
class UnrecognizedOperatorException(ParsingException):
|
|
def __init__(self, operator:str):
|
|
super().__init__("Unrecognized operator: " + operator)
|
|
|
|
def __init__(self, attention_plus_base=1.1, attention_minus_base=0.9):
|
|
|
|
self.conjunction, self.prompt = build_parser_syntax(attention_plus_base, attention_minus_base)
|
|
|
|
|
|
def parse_conjunction(self, prompt: str) -> Conjunction:
|
|
'''
|
|
:param prompt: The prompt string to parse
|
|
:return: a Conjunction representing the parsed results.
|
|
'''
|
|
#print(f"!!parsing '{prompt}'")
|
|
|
|
if len(prompt.strip()) == 0:
|
|
return Conjunction(prompts=[FlattenedPrompt([('', 1.0)])], weights=[1.0])
|
|
|
|
root = self.conjunction.parse_string(prompt)
|
|
#print(f"'{prompt}' parsed to root", root)
|
|
#fused = fuse_fragments(parts)
|
|
#print("fused to", fused)
|
|
|
|
return self.flatten(root[0])
|
|
|
|
def parse_legacy_blend(self, text: str) -> Optional[Blend]:
|
|
weighted_subprompts = split_weighted_subprompts(text, skip_normalize=False)
|
|
if len(weighted_subprompts) <= 1:
|
|
return None
|
|
strings = [x[0] for x in weighted_subprompts]
|
|
weights = [x[1] for x in weighted_subprompts]
|
|
|
|
parsed_conjunctions = [self.parse_conjunction(x) for x in strings]
|
|
flattened_prompts = [x.prompts[0] for x in parsed_conjunctions]
|
|
|
|
return Blend(prompts=flattened_prompts, weights=weights, normalize_weights=True)
|
|
|
|
|
|
def flatten(self, root: Conjunction, verbose = False) -> Conjunction:
|
|
"""
|
|
Flattening a Conjunction traverses all of the nested tree-like structures in each of its Prompts or Blends,
|
|
producing from each of these walks a linear sequence of Fragment or CrossAttentionControlSubstitute objects
|
|
that can be readily tokenized without the need to walk a complex tree structure.
|
|
|
|
:param root: The Conjunction to flatten.
|
|
:return: A Conjunction containing the result of flattening each of the prompts in the passed-in root.
|
|
"""
|
|
|
|
def fuse_fragments(items):
|
|
# print("fusing fragments in ", items)
|
|
result = []
|
|
for x in items:
|
|
if type(x) is CrossAttentionControlSubstitute:
|
|
original_fused = fuse_fragments(x.original)
|
|
edited_fused = fuse_fragments(x.edited)
|
|
result.append(CrossAttentionControlSubstitute(original_fused, edited_fused, options=x.options))
|
|
else:
|
|
last_weight = result[-1].weight \
|
|
if (len(result) > 0 and not issubclass(type(result[-1]), CrossAttentionControlledFragment)) \
|
|
else None
|
|
this_text = x.text
|
|
this_weight = x.weight
|
|
if last_weight is not None and last_weight == this_weight:
|
|
last_text = result[-1].text
|
|
result[-1] = Fragment(last_text + ' ' + this_text, last_weight)
|
|
else:
|
|
result.append(x)
|
|
return result
|
|
|
|
def flatten_internal(node, weight_scale, results, prefix):
|
|
verbose and print(prefix + "flattening", node, "...")
|
|
if type(node) is pp.ParseResults or type(node) is list:
|
|
for x in node:
|
|
results = flatten_internal(x, weight_scale, results, prefix+' pr ')
|
|
#print(prefix, " ParseResults expanded, results is now", results)
|
|
elif type(node) is Attention:
|
|
# if node.weight < 1:
|
|
# todo: inject a blend when flattening attention with weight <1"
|
|
for index,c in enumerate(node.children):
|
|
results = flatten_internal(c, weight_scale * node.weight, results, prefix + f" att{index} ")
|
|
elif type(node) is Fragment:
|
|
results += [Fragment(node.text, node.weight*weight_scale)]
|
|
elif type(node) is CrossAttentionControlSubstitute:
|
|
original = flatten_internal(node.original, weight_scale, [], prefix + ' CAo ')
|
|
edited = flatten_internal(node.edited, weight_scale, [], prefix + ' CAe ')
|
|
results += [CrossAttentionControlSubstitute(original, edited, options=node.options)]
|
|
elif type(node) is Blend:
|
|
flattened_subprompts = []
|
|
#print(" flattening blend with prompts", node.prompts, "weights", node.weights)
|
|
for prompt in node.prompts:
|
|
# prompt is a list
|
|
flattened_subprompts = flatten_internal(prompt, weight_scale, flattened_subprompts, prefix+'B ')
|
|
results += [Blend(prompts=flattened_subprompts, weights=node.weights, normalize_weights=node.normalize_weights)]
|
|
elif type(node) is Prompt:
|
|
#print(prefix + "about to flatten Prompt with children", node.children)
|
|
flattened_prompt = []
|
|
for child in node.children:
|
|
flattened_prompt = flatten_internal(child, weight_scale, flattened_prompt, prefix+'P ')
|
|
results += [FlattenedPrompt(parts=fuse_fragments(flattened_prompt))]
|
|
#print(prefix + "after flattening Prompt, results is", results)
|
|
else:
|
|
raise PromptParser.ParsingException(f"unhandled node type {type(node)} when flattening {node}")
|
|
verbose and print(prefix + "-> after flattening", type(node).__name__, "results is", results)
|
|
return results
|
|
|
|
verbose and print("flattening", root)
|
|
|
|
flattened_parts = []
|
|
for part in root.prompts:
|
|
flattened_parts += flatten_internal(part, 1.0, [], ' C| ')
|
|
|
|
verbose and print("flattened to", flattened_parts)
|
|
|
|
weights = root.weights
|
|
return Conjunction(flattened_parts, weights)
|
|
|
|
|
|
|
|
|
|
def build_parser_syntax(attention_plus_base: float, attention_minus_base: float):
|
|
def make_operator_object(x):
|
|
#print('making operator for', x)
|
|
target = x[0]
|
|
operator = x[1]
|
|
arguments = x[2]
|
|
if operator == '.attend':
|
|
weight_raw = arguments[0]
|
|
weight = 1.0
|
|
if type(weight_raw) is float or type(weight_raw) is int:
|
|
weight = weight_raw
|
|
elif type(weight_raw) is str:
|
|
base = attention_plus_base if weight_raw[0] == '+' else attention_minus_base
|
|
weight = pow(base, len(weight_raw))
|
|
return Attention(weight=weight, children=[x for x in x[0]])
|
|
elif operator == '.swap':
|
|
return CrossAttentionControlSubstitute(target, arguments, x.as_dict())
|
|
elif operator == '.blend':
|
|
prompts = [Prompt(p) for p in x[0]]
|
|
weights_raw = x[2]
|
|
normalize_weights = True
|
|
if len(weights_raw) > 0 and weights_raw[-1][0] == 'no_normalize':
|
|
normalize_weights = False
|
|
weights_raw = weights_raw[:-1]
|
|
weights = [float(w[0]) for w in weights_raw]
|
|
return Blend(prompts=prompts, weights=weights, normalize_weights=normalize_weights)
|
|
elif operator == '.and' or operator == '.add':
|
|
prompts = [Prompt(p) for p in x[0]]
|
|
weights = [float(w[0]) for w in x[2]]
|
|
return Conjunction(prompts=prompts, weights=weights)
|
|
|
|
raise PromptParser.UnrecognizedOperatorException(operator)
|
|
|
|
def parse_fragment_str(x, expression: pp.ParseExpression, in_quotes: bool = False, in_parens: bool = False):
|
|
#print(f"parsing fragment string for {x}")
|
|
fragment_string = x[0]
|
|
if len(fragment_string.strip()) == 0:
|
|
return Fragment('')
|
|
|
|
if in_quotes:
|
|
# escape unescaped quotes
|
|
fragment_string = fragment_string.replace('"', '\\"')
|
|
|
|
try:
|
|
result = (expression + pp.StringEnd()).parse_string(fragment_string)
|
|
#print("parsed to", result)
|
|
return result
|
|
except pp.ParseException as e:
|
|
#print("parse_fragment_str couldn't parse prompt string:", e)
|
|
raise
|
|
|
|
# meaningful symbols
|
|
lparen = pp.Literal("(").suppress()
|
|
rparen = pp.Literal(")").suppress()
|
|
quote = pp.Literal('"').suppress()
|
|
comma = pp.Literal(",").suppress()
|
|
dot = pp.Literal(".").suppress()
|
|
equals = pp.Literal("=").suppress()
|
|
|
|
escaped_lparen = pp.Literal('\\(')
|
|
escaped_rparen = pp.Literal('\\)')
|
|
escaped_quote = pp.Literal('\\"')
|
|
escaped_comma = pp.Literal('\\,')
|
|
escaped_dot = pp.Literal('\\.')
|
|
escaped_plus = pp.Literal('\\+')
|
|
escaped_minus = pp.Literal('\\-')
|
|
escaped_equals = pp.Literal('\\=')
|
|
|
|
syntactic_symbols = {
|
|
'(': escaped_lparen,
|
|
')': escaped_rparen,
|
|
'"': escaped_quote,
|
|
',': escaped_comma,
|
|
'.': escaped_dot,
|
|
'+': escaped_plus,
|
|
'-': escaped_minus,
|
|
'=': escaped_equals,
|
|
}
|
|
syntactic_chars = "".join(syntactic_symbols.keys())
|
|
|
|
# accepts int or float notation, always maps to float
|
|
number = pp.pyparsing_common.real | \
|
|
pp.Combine(pp.Optional("-")+pp.Word(pp.nums)).set_parse_action(pp.token_map(float))
|
|
|
|
# for options
|
|
keyword = pp.Word(pp.alphanums + '_')
|
|
|
|
# a word that absolutely does not contain any meaningful syntax
|
|
non_syntax_word = pp.Combine(pp.OneOrMore(pp.MatchFirst([
|
|
pp.Or(syntactic_symbols.values()),
|
|
pp.one_of(['-', '+']) + pp.NotAny(pp.White() | pp.Char(syntactic_chars) | pp.StringEnd()),
|
|
# build character-by-character
|
|
pp.CharsNotIn(string.whitespace + syntactic_chars, exact=1)
|
|
])))
|
|
non_syntax_word.set_parse_action(lambda x: [Fragment(t) for t in x])
|
|
non_syntax_word.set_name('non_syntax_word')
|
|
non_syntax_word.set_debug(False)
|
|
|
|
# a word that can contain any character at all - greedily consumes syntax, so use with care
|
|
free_word = pp.CharsNotIn(string.whitespace).set_parse_action(lambda x: Fragment(x[0]))
|
|
free_word.set_name('free_word')
|
|
free_word.set_debug(False)
|
|
|
|
|
|
# ok here we go. forward declare some things..
|
|
attention = pp.Forward()
|
|
cross_attention_substitute = pp.Forward()
|
|
parenthesized_fragment = pp.Forward()
|
|
quoted_fragment = pp.Forward()
|
|
|
|
# the types of things that can go into a fragment, consisting of syntax-full and/or strictly syntax-free components
|
|
fragment_part_expressions = [
|
|
attention,
|
|
cross_attention_substitute,
|
|
parenthesized_fragment,
|
|
quoted_fragment,
|
|
non_syntax_word
|
|
]
|
|
# a fragment that is permitted to contain commas
|
|
fragment_including_commas = pp.ZeroOrMore(pp.MatchFirst(
|
|
fragment_part_expressions + [
|
|
pp.Literal(',').set_parse_action(lambda x: Fragment(x[0]))
|
|
]
|
|
))
|
|
# a fragment that is not permitted to contain commas
|
|
fragment_excluding_commas = pp.ZeroOrMore(pp.MatchFirst(
|
|
fragment_part_expressions
|
|
))
|
|
|
|
# a fragment in double quotes (may be nested)
|
|
quoted_fragment << pp.QuotedString(quote_char='"', esc_char=None, esc_quote='\\"')
|
|
quoted_fragment.set_parse_action(lambda x: parse_fragment_str(x, fragment_including_commas, in_quotes=True))
|
|
|
|
# a fragment inside parentheses (may be nested)
|
|
parenthesized_fragment << (lparen + fragment_including_commas + rparen)
|
|
parenthesized_fragment.set_name('parenthesized_fragment')
|
|
parenthesized_fragment.set_debug(False)
|
|
|
|
# a string of the form (<keyword>=<float|keyword> | <float> | <keyword>) where keyword is alphanumeric + '_'
|
|
option = pp.Group(pp.MatchFirst([
|
|
keyword + equals + (number | keyword), # option=value
|
|
number.copy().set_parse_action(pp.token_map(str)), # weight
|
|
keyword # flag
|
|
]))
|
|
# options for an operator, eg "s_start=0.1, 0.3, no_normalize"
|
|
options = pp.Dict(pp.Optional(pp.delimited_list(option)))
|
|
options.set_name('options')
|
|
options.set_debug(False)
|
|
|
|
# a fragment which can be used as the target for an operator - either quoted or in parentheses, or a bare vanilla word
|
|
potential_operator_target = (quoted_fragment | parenthesized_fragment | non_syntax_word)
|
|
|
|
# a fragment whose weight has been increased or decreased by a given amount
|
|
attention_weight_operator = pp.Word('+') | pp.Word('-') | number
|
|
attention_explicit = (
|
|
pp.Group(potential_operator_target)
|
|
+ pp.Literal('.attend')
|
|
+ lparen
|
|
+ pp.Group(attention_weight_operator)
|
|
+ rparen
|
|
)
|
|
attention_explicit.set_parse_action(make_operator_object)
|
|
attention_implicit = (
|
|
pp.Group(potential_operator_target)
|
|
+ pp.NotAny(pp.White()) # do not permit whitespace between term and operator
|
|
+ pp.Group(attention_weight_operator)
|
|
)
|
|
attention_implicit.set_parse_action(lambda x: make_operator_object([x[0], '.attend', x[1]]))
|
|
attention << (attention_explicit | attention_implicit)
|
|
attention.set_name('attention')
|
|
attention.set_debug(False)
|
|
|
|
# cross-attention control by swapping one fragment for another
|
|
cross_attention_substitute << (
|
|
pp.Group(potential_operator_target).set_name('ca-target').set_debug(False)
|
|
+ pp.Literal(".swap").set_name('ca-operator').set_debug(False)
|
|
+ lparen
|
|
+ pp.Group(fragment_excluding_commas).set_name('ca-replacement').set_debug(False)
|
|
+ pp.Optional(comma + options).set_name('ca-options').set_debug(False)
|
|
+ rparen
|
|
)
|
|
cross_attention_substitute.set_name('cross_attention_substitute')
|
|
cross_attention_substitute.set_debug(False)
|
|
cross_attention_substitute.set_parse_action(make_operator_object)
|
|
|
|
|
|
# an entire self-contained prompt, which can be used in a Blend or Conjunction
|
|
prompt = pp.ZeroOrMore(pp.MatchFirst([
|
|
cross_attention_substitute,
|
|
attention,
|
|
quoted_fragment,
|
|
parenthesized_fragment,
|
|
free_word,
|
|
pp.White().suppress()
|
|
]))
|
|
quoted_prompt = quoted_fragment.copy().set_parse_action(lambda x: parse_fragment_str(x, prompt, in_quotes=True))
|
|
|
|
|
|
# a blend/lerp between the feature vectors for two or more prompts
|
|
blend = (
|
|
lparen
|
|
+ pp.Group(pp.delimited_list(pp.Group(potential_operator_target | quoted_prompt), min=1)).set_name('bl-target').set_debug(False)
|
|
+ rparen
|
|
+ pp.Literal(".blend").set_name('bl-operator').set_debug(False)
|
|
+ lparen
|
|
+ pp.Group(options).set_name('bl-options').set_debug(False)
|
|
+ rparen
|
|
)
|
|
blend.set_name('blend')
|
|
blend.set_debug(False)
|
|
blend.set_parse_action(make_operator_object)
|
|
|
|
# an operator to direct stable diffusion to step multiple times, once for each target, and then add the results together with different weights
|
|
explicit_conjunction = (
|
|
lparen
|
|
+ pp.Group(pp.delimited_list(pp.Group(potential_operator_target | quoted_prompt), min=1)).set_name('cj-target').set_debug(False)
|
|
+ rparen
|
|
+ pp.one_of([".and", ".add"]).set_name('cj-operator').set_debug(False)
|
|
+ lparen
|
|
+ pp.Group(options).set_name('cj-options').set_debug(False)
|
|
+ rparen
|
|
)
|
|
explicit_conjunction.set_name('explicit_conjunction')
|
|
explicit_conjunction.set_debug(False)
|
|
explicit_conjunction.set_parse_action(make_operator_object)
|
|
|
|
# by default a prompt consists of a Conjunction with a single term
|
|
implicit_conjunction = (blend | pp.Group(prompt)) + pp.StringEnd()
|
|
implicit_conjunction.set_parse_action(lambda x: Conjunction(x))
|
|
|
|
conjunction = (explicit_conjunction | implicit_conjunction)
|
|
|
|
return conjunction, prompt
|
|
|
|
|
|
def split_weighted_subprompts(text, skip_normalize=False)->list:
|
|
"""
|
|
Legacy blend parsing.
|
|
|
|
grabs all text up to the first occurrence of ':'
|
|
uses the grabbed text as a sub-prompt, and takes the value following ':' as weight
|
|
if ':' has no value defined, defaults to 1.0
|
|
repeats until no text remaining
|
|
"""
|
|
prompt_parser = re.compile("""
|
|
(?P<prompt> # capture group for 'prompt'
|
|
(?:\\\:|[^:])+ # match one or more non ':' characters or escaped colons '\:'
|
|
) # end 'prompt'
|
|
(?: # non-capture group
|
|
:+ # match one or more ':' characters
|
|
(?P<weight> # capture group for 'weight'
|
|
-?\d+(?:\.\d+)? # match positive or negative integer or decimal number
|
|
)? # end weight capture group, make optional
|
|
\s* # strip spaces after weight
|
|
| # OR
|
|
$ # else, if no ':' then match end of line
|
|
) # end non-capture group
|
|
""", re.VERBOSE)
|
|
parsed_prompts = [(match.group("prompt").replace("\\:", ":"), float(
|
|
match.group("weight") or 1)) for match in re.finditer(prompt_parser, text)]
|
|
if skip_normalize:
|
|
return parsed_prompts
|
|
weight_sum = sum(map(lambda x: x[1], parsed_prompts))
|
|
if weight_sum == 0:
|
|
print(
|
|
"* Warning: Subprompt weights add up to zero. Discarding and using even weights instead.")
|
|
equal_weight = 1 / max(len(parsed_prompts), 1)
|
|
return [(x[0], equal_weight) for x in parsed_prompts]
|
|
return [(x[0], x[1] / weight_sum) for x in parsed_prompts]
|
|
|
|
|
|
# shows how the prompt is tokenized
|
|
# usually tokens have '</w>' to indicate end-of-word,
|
|
# but for readability it has been replaced with ' '
|
|
def log_tokenization(text, model, display_label=None):
|
|
tokens = model.cond_stage_model.tokenizer._tokenize(text)
|
|
tokenized = ""
|
|
discarded = ""
|
|
usedTokens = 0
|
|
totalTokens = len(tokens)
|
|
for i in range(0, totalTokens):
|
|
token = tokens[i].replace('</w>', 'x` ')
|
|
# alternate color
|
|
s = (usedTokens % 6) + 1
|
|
if i < model.cond_stage_model.max_length:
|
|
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
|
usedTokens += 1
|
|
else: # over max token length
|
|
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
|
print(f"\n>> Tokens {display_label or ''} ({usedTokens}):\n{tokenized}\x1b[0m")
|
|
if discarded != "":
|
|
print(
|
|
f">> Tokens Discarded ({totalTokens-usedTokens}):\n{discarded}\x1b[0m"
|
|
)
|