mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
721 lines
26 KiB
Python
721 lines
26 KiB
Python
from typing import Literal, Optional, Union, List, Annotated
|
|
from pydantic import BaseModel, Field
|
|
import re
|
|
import torch
|
|
from compel import Compel, ReturnedEmbeddingsType
|
|
from compel.prompt_parser import (Blend, Conjunction,
|
|
CrossAttentionControlSubstitute,
|
|
FlattenedPrompt, Fragment)
|
|
from ...backend.util.devices import torch_dtype
|
|
from ...backend.model_management import ModelType
|
|
from ...backend.model_management.models import ModelNotFoundException
|
|
from ...backend.model_management.lora import ModelPatcher
|
|
from ...backend.stable_diffusion.diffusion import InvokeAIDiffuserComponent
|
|
from .baseinvocation import (BaseInvocation, BaseInvocationOutput,
|
|
InvocationConfig, InvocationContext)
|
|
from .model import ClipField
|
|
from dataclasses import dataclass
|
|
|
|
|
|
class ConditioningField(BaseModel):
|
|
conditioning_name: Optional[str] = Field(
|
|
default=None, description="The name of conditioning data")
|
|
|
|
class Config:
|
|
schema_extra = {"required": ["conditioning_name"]}
|
|
|
|
@dataclass
|
|
class BasicConditioningInfo:
|
|
#type: Literal["basic_conditioning"] = "basic_conditioning"
|
|
embeds: torch.Tensor
|
|
extra_conditioning: Optional[InvokeAIDiffuserComponent.ExtraConditioningInfo]
|
|
# weight: float
|
|
# mode: ConditioningAlgo
|
|
|
|
@dataclass
|
|
class SDXLConditioningInfo(BasicConditioningInfo):
|
|
#type: Literal["sdxl_conditioning"] = "sdxl_conditioning"
|
|
pooled_embeds: torch.Tensor
|
|
add_time_ids: torch.Tensor
|
|
|
|
ConditioningInfoType = Annotated[
|
|
Union[BasicConditioningInfo, SDXLConditioningInfo],
|
|
Field(discriminator="type")
|
|
]
|
|
|
|
@dataclass
|
|
class ConditioningFieldData:
|
|
conditionings: List[Union[BasicConditioningInfo, SDXLConditioningInfo]]
|
|
#unconditioned: Optional[torch.Tensor]
|
|
|
|
#class ConditioningAlgo(str, Enum):
|
|
# Compose = "compose"
|
|
# ComposeEx = "compose_ex"
|
|
# PerpNeg = "perp_neg"
|
|
|
|
class CompelOutput(BaseInvocationOutput):
|
|
"""Compel parser output"""
|
|
|
|
#fmt: off
|
|
type: Literal["compel_output"] = "compel_output"
|
|
|
|
conditioning: ConditioningField = Field(default=None, description="Conditioning")
|
|
#fmt: on
|
|
|
|
|
|
class CompelInvocation(BaseInvocation):
|
|
"""Parse prompt using compel package to conditioning."""
|
|
|
|
type: Literal["compel"] = "compel"
|
|
|
|
prompt: str = Field(default="", description="Prompt")
|
|
clip: ClipField = Field(None, description="Clip to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "Prompt (Compel)",
|
|
"tags": ["prompt", "compel"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
tokenizer_info = context.services.model_manager.get_model(
|
|
**self.clip.tokenizer.dict(), context=context,
|
|
)
|
|
text_encoder_info = context.services.model_manager.get_model(
|
|
**self.clip.text_encoder.dict(), context=context,
|
|
)
|
|
|
|
def _lora_loader():
|
|
for lora in self.clip.loras:
|
|
lora_info = context.services.model_manager.get_model(
|
|
**lora.dict(exclude={"weight"}))
|
|
yield (lora_info.context.model, lora.weight)
|
|
del lora_info
|
|
return
|
|
|
|
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
|
|
ti_list = []
|
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", self.prompt):
|
|
name = trigger[1:-1]
|
|
try:
|
|
ti_list.append(
|
|
context.services.model_manager.get_model(
|
|
model_name=name,
|
|
base_model=self.clip.text_encoder.base_model,
|
|
model_type=ModelType.TextualInversion,
|
|
context=context,
|
|
).context.model
|
|
)
|
|
except ModelNotFoundException:
|
|
# print(e)
|
|
#import traceback
|
|
#print(traceback.format_exc())
|
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
|
|
|
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
|
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
|
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, self.clip.skipped_layers),\
|
|
text_encoder_info as text_encoder:
|
|
|
|
compel = Compel(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
textual_inversion_manager=ti_manager,
|
|
dtype_for_device_getter=torch_dtype,
|
|
truncate_long_prompts=True,
|
|
)
|
|
|
|
conjunction = Compel.parse_prompt_string(self.prompt)
|
|
prompt: Union[FlattenedPrompt, Blend] = conjunction.prompts[0]
|
|
|
|
if context.services.configuration.log_tokenization:
|
|
log_tokenization_for_prompt_object(prompt, tokenizer)
|
|
|
|
c, options = compel.build_conditioning_tensor_for_prompt_object(
|
|
prompt)
|
|
|
|
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
|
tokens_count_including_eos_bos=get_max_token_count(
|
|
tokenizer, conjunction),
|
|
cross_attention_control_args=options.get(
|
|
"cross_attention_control", None),)
|
|
|
|
c = c.detach().to("cpu")
|
|
|
|
conditioning_data = ConditioningFieldData(
|
|
conditionings=[
|
|
BasicConditioningInfo(
|
|
embeds=c,
|
|
extra_conditioning=ec,
|
|
)
|
|
]
|
|
)
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
context.services.latents.save(conditioning_name, conditioning_data)
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
class SDXLPromptInvocationBase:
|
|
def run_clip_raw(self, context, clip_field, prompt, get_pooled):
|
|
tokenizer_info = context.services.model_manager.get_model(
|
|
**clip_field.tokenizer.dict(),
|
|
)
|
|
text_encoder_info = context.services.model_manager.get_model(
|
|
**clip_field.text_encoder.dict(),
|
|
)
|
|
|
|
def _lora_loader():
|
|
for lora in clip_field.loras:
|
|
lora_info = context.services.model_manager.get_model(
|
|
**lora.dict(exclude={"weight"}))
|
|
yield (lora_info.context.model, lora.weight)
|
|
del lora_info
|
|
return
|
|
|
|
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
|
|
ti_list = []
|
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
|
name = trigger[1:-1]
|
|
try:
|
|
ti_list.append(
|
|
context.services.model_manager.get_model(
|
|
model_name=name,
|
|
base_model=clip_field.text_encoder.base_model,
|
|
model_type=ModelType.TextualInversion,
|
|
).context.model
|
|
)
|
|
except ModelNotFoundException:
|
|
# print(e)
|
|
#import traceback
|
|
#print(traceback.format_exc())
|
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
|
|
|
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
|
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
|
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
|
|
text_encoder_info as text_encoder:
|
|
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
prompt_embeds = text_encoder(
|
|
text_input_ids.to(text_encoder.device),
|
|
output_hidden_states=True,
|
|
)
|
|
if get_pooled:
|
|
c_pooled = prompt_embeds[0]
|
|
else:
|
|
c_pooled = None
|
|
c = prompt_embeds.hidden_states[-2]
|
|
|
|
del tokenizer
|
|
del text_encoder
|
|
del tokenizer_info
|
|
del text_encoder_info
|
|
|
|
c = c.detach().to("cpu")
|
|
if c_pooled is not None:
|
|
c_pooled = c_pooled.detach().to("cpu")
|
|
|
|
return c, c_pooled, None
|
|
|
|
def run_clip_compel(self, context, clip_field, prompt, get_pooled):
|
|
tokenizer_info = context.services.model_manager.get_model(
|
|
**clip_field.tokenizer.dict(),
|
|
)
|
|
text_encoder_info = context.services.model_manager.get_model(
|
|
**clip_field.text_encoder.dict(),
|
|
)
|
|
|
|
def _lora_loader():
|
|
for lora in clip_field.loras:
|
|
lora_info = context.services.model_manager.get_model(
|
|
**lora.dict(exclude={"weight"}))
|
|
yield (lora_info.context.model, lora.weight)
|
|
del lora_info
|
|
return
|
|
|
|
#loras = [(context.services.model_manager.get_model(**lora.dict(exclude={"weight"})).context.model, lora.weight) for lora in self.clip.loras]
|
|
|
|
ti_list = []
|
|
for trigger in re.findall(r"<[a-zA-Z0-9., _-]+>", prompt):
|
|
name = trigger[1:-1]
|
|
try:
|
|
ti_list.append(
|
|
context.services.model_manager.get_model(
|
|
model_name=name,
|
|
base_model=clip_field.text_encoder.base_model,
|
|
model_type=ModelType.TextualInversion,
|
|
).context.model
|
|
)
|
|
except ModelNotFoundException:
|
|
# print(e)
|
|
#import traceback
|
|
#print(traceback.format_exc())
|
|
print(f"Warn: trigger: \"{trigger}\" not found")
|
|
|
|
with ModelPatcher.apply_lora_text_encoder(text_encoder_info.context.model, _lora_loader()),\
|
|
ModelPatcher.apply_ti(tokenizer_info.context.model, text_encoder_info.context.model, ti_list) as (tokenizer, ti_manager),\
|
|
ModelPatcher.apply_clip_skip(text_encoder_info.context.model, clip_field.skipped_layers),\
|
|
text_encoder_info as text_encoder:
|
|
|
|
compel = Compel(
|
|
tokenizer=tokenizer,
|
|
text_encoder=text_encoder,
|
|
textual_inversion_manager=ti_manager,
|
|
dtype_for_device_getter=torch_dtype,
|
|
truncate_long_prompts=True, # TODO:
|
|
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, # TODO: clip skip
|
|
requires_pooled=True,
|
|
)
|
|
|
|
conjunction = Compel.parse_prompt_string(prompt)
|
|
|
|
if context.services.configuration.log_tokenization:
|
|
# TODO: better logging for and syntax
|
|
for prompt_obj in conjunction.prompts:
|
|
log_tokenization_for_prompt_object(prompt_obj, tokenizer)
|
|
|
|
# TODO: ask for optimizations? to not run text_encoder twice
|
|
c, options = compel.build_conditioning_tensor_for_conjunction(conjunction)
|
|
if get_pooled:
|
|
c_pooled = compel.conditioning_provider.get_pooled_embeddings([prompt])
|
|
else:
|
|
c_pooled = None
|
|
|
|
ec = InvokeAIDiffuserComponent.ExtraConditioningInfo(
|
|
tokens_count_including_eos_bos=get_max_token_count(tokenizer, conjunction),
|
|
cross_attention_control_args=options.get("cross_attention_control", None),
|
|
)
|
|
|
|
del tokenizer
|
|
del text_encoder
|
|
del tokenizer_info
|
|
del text_encoder_info
|
|
|
|
c = c.detach().to("cpu")
|
|
if c_pooled is not None:
|
|
c_pooled = c_pooled.detach().to("cpu")
|
|
|
|
return c, c_pooled, ec
|
|
|
|
class SDXLCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|
"""Parse prompt using compel package to conditioning."""
|
|
|
|
type: Literal["sdxl_compel_prompt"] = "sdxl_compel_prompt"
|
|
|
|
prompt: str = Field(default="", description="Prompt")
|
|
style: str = Field(default="", description="Style prompt")
|
|
original_width: int = Field(1024, description="")
|
|
original_height: int = Field(1024, description="")
|
|
crop_top: int = Field(0, description="")
|
|
crop_left: int = Field(0, description="")
|
|
target_width: int = Field(1024, description="")
|
|
target_height: int = Field(1024, description="")
|
|
clip1: ClipField = Field(None, description="Clip to use")
|
|
clip2: ClipField = Field(None, description="Clip to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "SDXL Prompt (Compel)",
|
|
"tags": ["prompt", "compel"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
c1, c1_pooled, ec1 = self.run_clip_compel(context, self.clip1, self.prompt, False)
|
|
if self.style.strip() == "":
|
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.prompt, True)
|
|
else:
|
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
|
|
|
|
original_size = (self.original_height, self.original_width)
|
|
crop_coords = (self.crop_top, self.crop_left)
|
|
target_size = (self.target_height, self.target_width)
|
|
|
|
add_time_ids = torch.tensor([
|
|
original_size + crop_coords + target_size
|
|
])
|
|
|
|
conditioning_data = ConditioningFieldData(
|
|
conditionings=[
|
|
SDXLConditioningInfo(
|
|
embeds=torch.cat([c1, c2], dim=-1),
|
|
pooled_embeds=c2_pooled,
|
|
add_time_ids=add_time_ids,
|
|
extra_conditioning=ec1,
|
|
)
|
|
]
|
|
)
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
context.services.latents.save(conditioning_name, conditioning_data)
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
class SDXLRefinerCompelPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|
"""Parse prompt using compel package to conditioning."""
|
|
|
|
type: Literal["sdxl_refiner_compel_prompt"] = "sdxl_refiner_compel_prompt"
|
|
|
|
style: str = Field(default="", description="Style prompt") # TODO: ?
|
|
original_width: int = Field(1024, description="")
|
|
original_height: int = Field(1024, description="")
|
|
crop_top: int = Field(0, description="")
|
|
crop_left: int = Field(0, description="")
|
|
aesthetic_score: float = Field(6.0, description="")
|
|
clip2: ClipField = Field(None, description="Clip to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "SDXL Refiner Prompt (Compel)",
|
|
"tags": ["prompt", "compel"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
c2, c2_pooled, ec2 = self.run_clip_compel(context, self.clip2, self.style, True)
|
|
|
|
original_size = (self.original_height, self.original_width)
|
|
crop_coords = (self.crop_top, self.crop_left)
|
|
|
|
add_time_ids = torch.tensor([
|
|
original_size + crop_coords + (self.aesthetic_score,)
|
|
])
|
|
|
|
conditioning_data = ConditioningFieldData(
|
|
conditionings=[
|
|
SDXLConditioningInfo(
|
|
embeds=c2,
|
|
pooled_embeds=c2_pooled,
|
|
add_time_ids=add_time_ids,
|
|
extra_conditioning=ec2, # or None
|
|
)
|
|
]
|
|
)
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
context.services.latents.save(conditioning_name, conditioning_data)
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
class SDXLRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|
"""Pass unmodified prompt to conditioning without compel processing."""
|
|
|
|
type: Literal["sdxl_raw_prompt"] = "sdxl_raw_prompt"
|
|
|
|
prompt: str = Field(default="", description="Prompt")
|
|
style: str = Field(default="", description="Style prompt")
|
|
original_width: int = Field(1024, description="")
|
|
original_height: int = Field(1024, description="")
|
|
crop_top: int = Field(0, description="")
|
|
crop_left: int = Field(0, description="")
|
|
target_width: int = Field(1024, description="")
|
|
target_height: int = Field(1024, description="")
|
|
clip1: ClipField = Field(None, description="Clip to use")
|
|
clip2: ClipField = Field(None, description="Clip to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "SDXL Prompt (Raw)",
|
|
"tags": ["prompt", "compel"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
c1, c1_pooled, ec1 = self.run_clip_raw(context, self.clip1, self.prompt, False)
|
|
if self.style.strip() == "":
|
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.prompt, True)
|
|
else:
|
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
|
|
|
|
original_size = (self.original_height, self.original_width)
|
|
crop_coords = (self.crop_top, self.crop_left)
|
|
target_size = (self.target_height, self.target_width)
|
|
|
|
add_time_ids = torch.tensor([
|
|
original_size + crop_coords + target_size
|
|
])
|
|
|
|
conditioning_data = ConditioningFieldData(
|
|
conditionings=[
|
|
SDXLConditioningInfo(
|
|
embeds=torch.cat([c1, c2], dim=-1),
|
|
pooled_embeds=c2_pooled,
|
|
add_time_ids=add_time_ids,
|
|
extra_conditioning=ec1,
|
|
)
|
|
]
|
|
)
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
context.services.latents.save(conditioning_name, conditioning_data)
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
class SDXLRefinerRawPromptInvocation(BaseInvocation, SDXLPromptInvocationBase):
|
|
"""Parse prompt using compel package to conditioning."""
|
|
|
|
type: Literal["sdxl_refiner_raw_prompt"] = "sdxl_refiner_raw_prompt"
|
|
|
|
style: str = Field(default="", description="Style prompt") # TODO: ?
|
|
original_width: int = Field(1024, description="")
|
|
original_height: int = Field(1024, description="")
|
|
crop_top: int = Field(0, description="")
|
|
crop_left: int = Field(0, description="")
|
|
aesthetic_score: float = Field(6.0, description="")
|
|
clip2: ClipField = Field(None, description="Clip to use")
|
|
|
|
# Schema customisation
|
|
class Config(InvocationConfig):
|
|
schema_extra = {
|
|
"ui": {
|
|
"title": "SDXL Refiner Prompt (Raw)",
|
|
"tags": ["prompt", "compel"],
|
|
"type_hints": {
|
|
"model": "model"
|
|
}
|
|
},
|
|
}
|
|
|
|
@torch.no_grad()
|
|
def invoke(self, context: InvocationContext) -> CompelOutput:
|
|
c2, c2_pooled, ec2 = self.run_clip_raw(context, self.clip2, self.style, True)
|
|
|
|
original_size = (self.original_height, self.original_width)
|
|
crop_coords = (self.crop_top, self.crop_left)
|
|
|
|
add_time_ids = torch.tensor([
|
|
original_size + crop_coords + (self.aesthetic_score,)
|
|
])
|
|
|
|
conditioning_data = ConditioningFieldData(
|
|
conditionings=[
|
|
SDXLConditioningInfo(
|
|
embeds=c2,
|
|
pooled_embeds=c2_pooled,
|
|
add_time_ids=add_time_ids,
|
|
extra_conditioning=ec2, # or None
|
|
)
|
|
]
|
|
)
|
|
|
|
conditioning_name = f"{context.graph_execution_state_id}_{self.id}_conditioning"
|
|
context.services.latents.save(conditioning_name, conditioning_data)
|
|
|
|
return CompelOutput(
|
|
conditioning=ConditioningField(
|
|
conditioning_name=conditioning_name,
|
|
),
|
|
)
|
|
|
|
|
|
class ClipSkipInvocationOutput(BaseInvocationOutput):
|
|
"""Clip skip node output"""
|
|
type: Literal["clip_skip_output"] = "clip_skip_output"
|
|
clip: ClipField = Field(None, description="Clip with skipped layers")
|
|
|
|
class ClipSkipInvocation(BaseInvocation):
|
|
"""Skip layers in clip text_encoder model."""
|
|
type: Literal["clip_skip"] = "clip_skip"
|
|
|
|
clip: ClipField = Field(None, description="Clip to use")
|
|
skipped_layers: int = Field(0, description="Number of layers to skip in text_encoder")
|
|
|
|
def invoke(self, context: InvocationContext) -> ClipSkipInvocationOutput:
|
|
self.clip.skipped_layers += self.skipped_layers
|
|
return ClipSkipInvocationOutput(
|
|
clip=self.clip,
|
|
)
|
|
|
|
|
|
def get_max_token_count(
|
|
tokenizer, prompt: Union[FlattenedPrompt, Blend, Conjunction],
|
|
truncate_if_too_long=False) -> int:
|
|
if type(prompt) is Blend:
|
|
blend: Blend = prompt
|
|
return max(
|
|
[
|
|
get_max_token_count(tokenizer, p, truncate_if_too_long)
|
|
for p in blend.prompts
|
|
]
|
|
)
|
|
elif type(prompt) is Conjunction:
|
|
conjunction: Conjunction = prompt
|
|
return sum(
|
|
[
|
|
get_max_token_count(tokenizer, p, truncate_if_too_long)
|
|
for p in conjunction.prompts
|
|
]
|
|
)
|
|
else:
|
|
return len(
|
|
get_tokens_for_prompt_object(
|
|
tokenizer, prompt, truncate_if_too_long))
|
|
|
|
|
|
def get_tokens_for_prompt_object(
|
|
tokenizer, parsed_prompt: FlattenedPrompt, truncate_if_too_long=True
|
|
) -> List[str]:
|
|
if type(parsed_prompt) is Blend:
|
|
raise ValueError(
|
|
"Blend is not supported here - you need to get tokens for each of its .children"
|
|
)
|
|
|
|
text_fragments = [
|
|
x.text
|
|
if type(x) is Fragment
|
|
else (
|
|
" ".join([f.text for f in x.original])
|
|
if type(x) is CrossAttentionControlSubstitute
|
|
else str(x)
|
|
)
|
|
for x in parsed_prompt.children
|
|
]
|
|
text = " ".join(text_fragments)
|
|
tokens = tokenizer.tokenize(text)
|
|
if truncate_if_too_long:
|
|
max_tokens_length = tokenizer.model_max_length - 2 # typically 75
|
|
tokens = tokens[0:max_tokens_length]
|
|
return tokens
|
|
|
|
|
|
def log_tokenization_for_conjunction(
|
|
c: Conjunction, tokenizer, display_label_prefix=None
|
|
):
|
|
display_label_prefix = display_label_prefix or ""
|
|
for i, p in enumerate(c.prompts):
|
|
if len(c.prompts) > 1:
|
|
this_display_label_prefix = f"{display_label_prefix}(conjunction part {i + 1}, weight={c.weights[i]})"
|
|
else:
|
|
this_display_label_prefix = display_label_prefix
|
|
log_tokenization_for_prompt_object(
|
|
p,
|
|
tokenizer,
|
|
display_label_prefix=this_display_label_prefix
|
|
)
|
|
|
|
|
|
def log_tokenization_for_prompt_object(
|
|
p: Union[Blend, FlattenedPrompt], tokenizer, display_label_prefix=None
|
|
):
|
|
display_label_prefix = display_label_prefix or ""
|
|
if type(p) is Blend:
|
|
blend: Blend = p
|
|
for i, c in enumerate(blend.prompts):
|
|
log_tokenization_for_prompt_object(
|
|
c,
|
|
tokenizer,
|
|
display_label_prefix=f"{display_label_prefix}(blend part {i + 1}, weight={blend.weights[i]})",
|
|
)
|
|
elif type(p) is FlattenedPrompt:
|
|
flattened_prompt: FlattenedPrompt = p
|
|
if flattened_prompt.wants_cross_attention_control:
|
|
original_fragments = []
|
|
edited_fragments = []
|
|
for f in flattened_prompt.children:
|
|
if type(f) is CrossAttentionControlSubstitute:
|
|
original_fragments += f.original
|
|
edited_fragments += f.edited
|
|
else:
|
|
original_fragments.append(f)
|
|
edited_fragments.append(f)
|
|
|
|
original_text = " ".join([x.text for x in original_fragments])
|
|
log_tokenization_for_text(
|
|
original_text,
|
|
tokenizer,
|
|
display_label=f"{display_label_prefix}(.swap originals)",
|
|
)
|
|
edited_text = " ".join([x.text for x in edited_fragments])
|
|
log_tokenization_for_text(
|
|
edited_text,
|
|
tokenizer,
|
|
display_label=f"{display_label_prefix}(.swap replacements)",
|
|
)
|
|
else:
|
|
text = " ".join([x.text for x in flattened_prompt.children])
|
|
log_tokenization_for_text(
|
|
text, tokenizer, display_label=display_label_prefix
|
|
)
|
|
|
|
|
|
def log_tokenization_for_text(
|
|
text, tokenizer, display_label=None, truncate_if_too_long=False):
|
|
"""shows how the prompt is tokenized
|
|
# usually tokens have '</w>' to indicate end-of-word,
|
|
# but for readability it has been replaced with ' '
|
|
"""
|
|
tokens = tokenizer.tokenize(text)
|
|
tokenized = ""
|
|
discarded = ""
|
|
usedTokens = 0
|
|
totalTokens = len(tokens)
|
|
|
|
for i in range(0, totalTokens):
|
|
token = tokens[i].replace("</w>", " ")
|
|
# alternate color
|
|
s = (usedTokens % 6) + 1
|
|
if truncate_if_too_long and i >= tokenizer.model_max_length:
|
|
discarded = discarded + f"\x1b[0;3{s};40m{token}"
|
|
else:
|
|
tokenized = tokenized + f"\x1b[0;3{s};40m{token}"
|
|
usedTokens += 1
|
|
|
|
if usedTokens > 0:
|
|
print(f'\n>> [TOKENLOG] Tokens {display_label or ""} ({usedTokens}):')
|
|
print(f"{tokenized}\x1b[0m")
|
|
|
|
if discarded != "":
|
|
print(f"\n>> [TOKENLOG] Tokens Discarded ({totalTokens - usedTokens}):")
|
|
print(f"{discarded}\x1b[0m")
|