InvokeAI/tests/nodes/test_session_queue.py
psychedelicious 94c00cee4c feat: refactor services folder/module structure
Refactor services folder/module structure.

**Motivation**

While working on our services I've repeatedly encountered circular imports and a general lack of clarity regarding where to put things. The structure introduced goes a long way towards resolving those issues, setting us up for a clean structure going forward.

**Services**

Services are now in their own folder with a few files:

- `services/{service_name}/__init__.py`: init as needed, mostly empty now
- `services/{service_name}/{service_name}_base.py`: the base class for the service
- `services/{service_name}/{service_name}_{impl_type}.py`: the default concrete implementation of the service - typically one of `sqlite`, `default`, or `memory`
- `services/{service_name}/{service_name}_common.py`: any common items - models, exceptions, utilities, etc

Though it's a bit verbose to have the service name both as the folder name and the prefix for files, I found it is _extremely_ confusing to have all of the base classes just be named `base.py`. So, at the cost of some verbosity when importing things, I've included the service name in the filename.

There are some minor logic changes. For example, in `InvocationProcessor`, instead of assigning the model manager service to a variable to be used later in the file, the service is used directly via the `Invoker`.

**Shared**

Things that are used across disparate services are in `services/shared/`:

- `default_graphs.py`: previously in `services/`
- `graphs.py`: previously in `services/`
- `paginatation`: generic pagination models used in a few services
- `sqlite`: the `SqliteDatabase` class, other sqlite-specific things
2023-10-12 09:23:10 -04:00

256 lines
9.4 KiB
Python

import pytest
from pydantic import ValidationError, parse_raw_as
from invokeai.app.services.session_queue.session_queue_common import (
Batch,
BatchDataCollection,
BatchDatum,
NodeFieldValue,
calc_session_count,
create_session_nfv_tuples,
populate_graph,
prepare_values_to_insert,
)
from invokeai.app.services.shared.graph import Graph, GraphExecutionState, GraphInvocation
from tests.nodes.test_nodes import PromptTestInvocation
@pytest.fixture
def batch_data_collection() -> BatchDataCollection:
return [
[
# zipped
BatchDatum(node_path="1", field_name="prompt", items=["Banana sushi", "Grape sushi"]),
BatchDatum(node_path="2", field_name="prompt", items=["Strawberry sushi", "Blueberry sushi"]),
],
[
BatchDatum(node_path="3", field_name="prompt", items=["Orange sushi", "Apple sushi"]),
],
]
@pytest.fixture
def batch_graph() -> Graph:
g = Graph()
g.add_node(PromptTestInvocation(id="1", prompt="Chevy"))
g.add_node(PromptTestInvocation(id="2", prompt="Toyota"))
g.add_node(PromptTestInvocation(id="3", prompt="Subaru"))
g.add_node(PromptTestInvocation(id="4", prompt="Nissan"))
return g
def test_populate_graph_with_subgraph():
g1 = Graph()
g1.add_node(PromptTestInvocation(id="1", prompt="Banana sushi"))
g1.add_node(PromptTestInvocation(id="2", prompt="Banana sushi"))
n1 = PromptTestInvocation(id="1", prompt="Banana snake")
subgraph = Graph()
subgraph.add_node(n1)
g1.add_node(GraphInvocation(id="3", graph=subgraph))
nfvs = [
NodeFieldValue(node_path="1", field_name="prompt", value="Strawberry sushi"),
NodeFieldValue(node_path="2", field_name="prompt", value="Strawberry sunday"),
NodeFieldValue(node_path="3.1", field_name="prompt", value="Strawberry snake"),
]
g2 = populate_graph(g1, nfvs)
# do not mutate g1
assert g1 is not g2
assert g2.get_node("1").prompt == "Strawberry sushi"
assert g2.get_node("2").prompt == "Strawberry sunday"
assert g2.get_node("3.1").prompt == "Strawberry snake"
def test_create_sessions_from_batch_with_runs(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
t = list(create_session_nfv_tuples(batch=b, maximum=1000))
# 2 list[BatchDatum] * length 2 * 2 runs = 8
assert len(t) == 8
assert t[0][0].graph.get_node("1").prompt == "Banana sushi"
assert t[0][0].graph.get_node("2").prompt == "Strawberry sushi"
assert t[0][0].graph.get_node("3").prompt == "Orange sushi"
assert t[0][0].graph.get_node("4").prompt == "Nissan"
assert t[1][0].graph.get_node("1").prompt == "Banana sushi"
assert t[1][0].graph.get_node("2").prompt == "Strawberry sushi"
assert t[1][0].graph.get_node("3").prompt == "Apple sushi"
assert t[1][0].graph.get_node("4").prompt == "Nissan"
assert t[2][0].graph.get_node("1").prompt == "Grape sushi"
assert t[2][0].graph.get_node("2").prompt == "Blueberry sushi"
assert t[2][0].graph.get_node("3").prompt == "Orange sushi"
assert t[2][0].graph.get_node("4").prompt == "Nissan"
assert t[3][0].graph.get_node("1").prompt == "Grape sushi"
assert t[3][0].graph.get_node("2").prompt == "Blueberry sushi"
assert t[3][0].graph.get_node("3").prompt == "Apple sushi"
assert t[3][0].graph.get_node("4").prompt == "Nissan"
# repeat for second run
assert t[4][0].graph.get_node("1").prompt == "Banana sushi"
assert t[4][0].graph.get_node("2").prompt == "Strawberry sushi"
assert t[4][0].graph.get_node("3").prompt == "Orange sushi"
assert t[4][0].graph.get_node("4").prompt == "Nissan"
assert t[5][0].graph.get_node("1").prompt == "Banana sushi"
assert t[5][0].graph.get_node("2").prompt == "Strawberry sushi"
assert t[5][0].graph.get_node("3").prompt == "Apple sushi"
assert t[5][0].graph.get_node("4").prompt == "Nissan"
assert t[6][0].graph.get_node("1").prompt == "Grape sushi"
assert t[6][0].graph.get_node("2").prompt == "Blueberry sushi"
assert t[6][0].graph.get_node("3").prompt == "Orange sushi"
assert t[6][0].graph.get_node("4").prompt == "Nissan"
assert t[7][0].graph.get_node("1").prompt == "Grape sushi"
assert t[7][0].graph.get_node("2").prompt == "Blueberry sushi"
assert t[7][0].graph.get_node("3").prompt == "Apple sushi"
assert t[7][0].graph.get_node("4").prompt == "Nissan"
def test_create_sessions_from_batch_without_runs(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection)
t = list(create_session_nfv_tuples(batch=b, maximum=1000))
# 2 list[BatchDatum] * length 2 * 1 runs = 8
assert len(t) == 4
def test_create_sessions_from_batch_without_batch(batch_graph):
b = Batch(graph=batch_graph, runs=2)
t = list(create_session_nfv_tuples(batch=b, maximum=1000))
# 2 runs
assert len(t) == 2
def test_create_sessions_from_batch_without_batch_or_runs(batch_graph):
b = Batch(graph=batch_graph)
t = list(create_session_nfv_tuples(batch=b, maximum=1000))
# 1 run
assert len(t) == 1
def test_create_sessions_from_batch_with_runs_and_max(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
t = list(create_session_nfv_tuples(batch=b, maximum=5))
# 2 list[BatchDatum] * length 2 * 2 runs = 8, but max is 5
assert len(t) == 5
def test_calc_session_count(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
# 2 list[BatchDatum] * length 2 * 2 runs = 8
assert calc_session_count(batch=b) == 8
def test_prepare_values_to_insert(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
values = prepare_values_to_insert(queue_id="default", batch=b, priority=0, max_new_queue_items=1000)
assert len(values) == 8
# graph should be serialized
ges = parse_raw_as(GraphExecutionState, values[0].session)
# graph values should be populated
assert ges.graph.get_node("1").prompt == "Banana sushi"
assert ges.graph.get_node("2").prompt == "Strawberry sushi"
assert ges.graph.get_node("3").prompt == "Orange sushi"
assert ges.graph.get_node("4").prompt == "Nissan"
# session ids should match deserialized graph
assert [v.session_id for v in values] == [parse_raw_as(GraphExecutionState, v.session).id for v in values]
# should unique session ids
sids = [v.session_id for v in values]
assert len(sids) == len(set(sids))
# should have 3 node field values
assert type(values[0].field_values) is str
assert len(parse_raw_as(list[NodeFieldValue], values[0].field_values)) == 3
# should have batch id and priority
assert all(v.batch_id == b.batch_id for v in values)
assert all(v.priority == 0 for v in values)
def test_prepare_values_to_insert_with_priority(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
values = prepare_values_to_insert(queue_id="default", batch=b, priority=1, max_new_queue_items=1000)
assert all(v.priority == 1 for v in values)
def test_prepare_values_to_insert_with_max(batch_data_collection, batch_graph):
b = Batch(graph=batch_graph, data=batch_data_collection, runs=2)
values = prepare_values_to_insert(queue_id="default", batch=b, priority=1, max_new_queue_items=5)
assert len(values) == 5
def test_cannot_create_bad_batch_items_length(batch_graph):
with pytest.raises(ValidationError, match="Zipped batch items must all have the same length"):
Batch(
graph=batch_graph,
data=[
[
BatchDatum(node_path="1", field_name="prompt", items=["Banana sushi"]), # 1 item
BatchDatum(node_path="2", field_name="prompt", items=["Toyota", "Nissan"]), # 2 items
],
],
)
def test_cannot_create_bad_batch_items_type(batch_graph):
with pytest.raises(ValidationError, match="All items in a batch must have the same type"):
Batch(
graph=batch_graph,
data=[
[
BatchDatum(node_path="1", field_name="prompt", items=["Banana sushi", 123]),
]
],
)
def test_cannot_create_bad_batch_unique_ids(batch_graph):
with pytest.raises(ValidationError, match="Each batch data must have unique node_id and field_name"):
Batch(
graph=batch_graph,
data=[
[
BatchDatum(node_path="1", field_name="prompt", items=["Banana sushi"]),
],
[
BatchDatum(node_path="1", field_name="prompt", items=["Banana sushi"]),
],
],
)
def test_cannot_create_bad_batch_nodes_exist(
batch_graph,
):
with pytest.raises(ValidationError, match=r"Node .* not found in graph"):
Batch(
graph=batch_graph,
data=[
[
BatchDatum(node_path="batman", field_name="prompt", items=["Banana sushi"]),
],
],
)
def test_cannot_create_bad_batch_fields_exist(
batch_graph,
):
with pytest.raises(ValidationError, match=r"Field .* not found in node"):
Batch(
graph=batch_graph,
data=[
[
BatchDatum(node_path="1", field_name="batman", items=["Banana sushi"]),
],
],
)