mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
142016827f
- Issue is that if insufficient diffusers models are defined in models.yaml the frontend would ungraciously crash. - Now it emits appropriate error messages telling user what the problem is.
459 lines
15 KiB
Python
Executable File
459 lines
15 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
"""
|
|
This is the frontend to "textual_inversion_training.py".
|
|
|
|
Copyright (c) 2023 Lincoln Stein and the InvokeAI Development Team
|
|
"""
|
|
|
|
|
|
import os
|
|
import re
|
|
import shutil
|
|
import sys
|
|
import traceback
|
|
from argparse import Namespace
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
import npyscreen
|
|
from npyscreen import widget
|
|
from omegaconf import OmegaConf
|
|
|
|
from ldm.invoke.globals import Globals, global_set_root
|
|
from ldm.invoke.training.textual_inversion_training import (
|
|
do_textual_inversion_training,
|
|
parse_args,
|
|
)
|
|
|
|
TRAINING_DATA = "text-inversion-training-data"
|
|
TRAINING_DIR = "text-inversion-output"
|
|
CONF_FILE = "preferences.conf"
|
|
|
|
|
|
class textualInversionForm(npyscreen.FormMultiPageAction):
|
|
resolutions = [512, 768, 1024]
|
|
lr_schedulers = [
|
|
"linear",
|
|
"cosine",
|
|
"cosine_with_restarts",
|
|
"polynomial",
|
|
"constant",
|
|
"constant_with_warmup",
|
|
]
|
|
precisions = ["no", "fp16", "bf16"]
|
|
learnable_properties = ["object", "style"]
|
|
|
|
def __init__(self, parentApp, name, saved_args=None):
|
|
self.saved_args = saved_args or {}
|
|
super().__init__(parentApp, name)
|
|
|
|
def afterEditing(self):
|
|
self.parentApp.setNextForm(None)
|
|
|
|
def create(self):
|
|
self.model_names, default = self.get_model_names()
|
|
default_initializer_token = "★"
|
|
default_placeholder_token = ""
|
|
saved_args = self.saved_args
|
|
|
|
try:
|
|
default = self.model_names.index(saved_args["model"])
|
|
except:
|
|
pass
|
|
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields, cursor arrows to make a selection, and space to toggle checkboxes.",
|
|
editable=False,
|
|
)
|
|
|
|
self.model = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Model Name:",
|
|
values=self.model_names,
|
|
value=default,
|
|
max_height=len(self.model_names) + 1,
|
|
scroll_exit=True,
|
|
)
|
|
self.placeholder_token = self.add_widget_intelligent(
|
|
npyscreen.TitleText,
|
|
name="Trigger Term:",
|
|
value="", # saved_args.get('placeholder_token',''), # to restore previous term
|
|
scroll_exit=True,
|
|
)
|
|
self.placeholder_token.when_value_edited = self.initializer_changed
|
|
self.nextrely -= 1
|
|
self.nextrelx += 30
|
|
self.prompt_token = self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
name="Trigger term for use in prompt",
|
|
value="",
|
|
editable=False,
|
|
scroll_exit=True,
|
|
)
|
|
self.nextrelx -= 30
|
|
self.initializer_token = self.add_widget_intelligent(
|
|
npyscreen.TitleText,
|
|
name="Initializer:",
|
|
value=saved_args.get("initializer_token", default_initializer_token),
|
|
scroll_exit=True,
|
|
)
|
|
self.resume_from_checkpoint = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Resume from last saved checkpoint",
|
|
value=False,
|
|
scroll_exit=True,
|
|
)
|
|
self.learnable_property = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Learnable property:",
|
|
values=self.learnable_properties,
|
|
value=self.learnable_properties.index(
|
|
saved_args.get("learnable_property", "object")
|
|
),
|
|
max_height=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.train_data_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name="Data Training Directory:",
|
|
select_dir=True,
|
|
must_exist=False,
|
|
value=str(
|
|
saved_args.get(
|
|
"train_data_dir",
|
|
Path(Globals.root) / TRAINING_DATA / default_placeholder_token,
|
|
)
|
|
),
|
|
scroll_exit=True,
|
|
)
|
|
self.output_dir = self.add_widget_intelligent(
|
|
npyscreen.TitleFilename,
|
|
name="Output Destination Directory:",
|
|
select_dir=True,
|
|
must_exist=False,
|
|
value=str(
|
|
saved_args.get(
|
|
"output_dir",
|
|
Path(Globals.root) / TRAINING_DIR / default_placeholder_token,
|
|
)
|
|
),
|
|
scroll_exit=True,
|
|
)
|
|
self.resolution = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Image resolution (pixels):",
|
|
values=self.resolutions,
|
|
value=self.resolutions.index(saved_args.get("resolution", 512)),
|
|
max_height=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.center_crop = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Center crop images before resizing to resolution",
|
|
value=saved_args.get("center_crop", False),
|
|
scroll_exit=True,
|
|
)
|
|
self.mixed_precision = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Mixed Precision:",
|
|
values=self.precisions,
|
|
value=self.precisions.index(saved_args.get("mixed_precision", "fp16")),
|
|
max_height=4,
|
|
scroll_exit=True,
|
|
)
|
|
self.num_train_epochs = self.add_widget_intelligent(
|
|
npyscreen.TitleSlider,
|
|
name="Number of training epochs:",
|
|
out_of=1000,
|
|
step=50,
|
|
lowest=1,
|
|
value=saved_args.get("num_train_epochs", 100),
|
|
scroll_exit=True,
|
|
)
|
|
self.max_train_steps = self.add_widget_intelligent(
|
|
npyscreen.TitleSlider,
|
|
name="Max Training Steps:",
|
|
out_of=10000,
|
|
step=500,
|
|
lowest=1,
|
|
value=saved_args.get("max_train_steps", 3000),
|
|
scroll_exit=True,
|
|
)
|
|
self.train_batch_size = self.add_widget_intelligent(
|
|
npyscreen.TitleSlider,
|
|
name="Batch Size (reduce if you run out of memory):",
|
|
out_of=50,
|
|
step=1,
|
|
lowest=1,
|
|
value=saved_args.get("train_batch_size", 8),
|
|
scroll_exit=True,
|
|
)
|
|
self.gradient_accumulation_steps = self.add_widget_intelligent(
|
|
npyscreen.TitleSlider,
|
|
name="Gradient Accumulation Steps (may need to decrease this to resume from a checkpoint):",
|
|
out_of=10,
|
|
step=1,
|
|
lowest=1,
|
|
value=saved_args.get("gradient_accumulation_steps", 4),
|
|
scroll_exit=True,
|
|
)
|
|
self.lr_warmup_steps = self.add_widget_intelligent(
|
|
npyscreen.TitleSlider,
|
|
name="Warmup Steps:",
|
|
out_of=100,
|
|
step=1,
|
|
lowest=0,
|
|
value=saved_args.get("lr_warmup_steps", 0),
|
|
scroll_exit=True,
|
|
)
|
|
self.learning_rate = self.add_widget_intelligent(
|
|
npyscreen.TitleText,
|
|
name="Learning Rate:",
|
|
value=str(
|
|
saved_args.get("learning_rate", "5.0e-04"),
|
|
),
|
|
scroll_exit=True,
|
|
)
|
|
self.scale_lr = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Scale learning rate by number GPUs, steps and batch size",
|
|
value=saved_args.get("scale_lr", True),
|
|
scroll_exit=True,
|
|
)
|
|
self.enable_xformers_memory_efficient_attention = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Use xformers acceleration",
|
|
value=saved_args.get("enable_xformers_memory_efficient_attention", False),
|
|
scroll_exit=True,
|
|
)
|
|
self.lr_scheduler = self.add_widget_intelligent(
|
|
npyscreen.TitleSelectOne,
|
|
name="Learning rate scheduler:",
|
|
values=self.lr_schedulers,
|
|
max_height=7,
|
|
value=self.lr_schedulers.index(saved_args.get("lr_scheduler", "constant")),
|
|
scroll_exit=True,
|
|
)
|
|
self.model.editing = True
|
|
|
|
def initializer_changed(self):
|
|
placeholder = self.placeholder_token.value
|
|
self.prompt_token.value = f"(Trigger by using <{placeholder}> in your prompts)"
|
|
self.train_data_dir.value = str(
|
|
Path(Globals.root) / TRAINING_DATA / placeholder
|
|
)
|
|
self.output_dir.value = str(Path(Globals.root) / TRAINING_DIR / placeholder)
|
|
self.resume_from_checkpoint.value = Path(self.output_dir.value).exists()
|
|
|
|
def on_ok(self):
|
|
if self.validate_field_values():
|
|
self.parentApp.setNextForm(None)
|
|
self.editing = False
|
|
self.parentApp.ti_arguments = self.marshall_arguments()
|
|
npyscreen.notify(
|
|
"Launching textual inversion training. This will take a while..."
|
|
)
|
|
else:
|
|
self.editing = True
|
|
|
|
def ok_cancel(self):
|
|
sys.exit(0)
|
|
|
|
def validate_field_values(self) -> bool:
|
|
bad_fields = []
|
|
if self.model.value is None:
|
|
bad_fields.append(
|
|
"Model Name must correspond to a known model in models.yaml"
|
|
)
|
|
if not re.match("^[a-zA-Z0-9.-]+$", self.placeholder_token.value):
|
|
bad_fields.append(
|
|
"Trigger term must only contain alphanumeric characters, the dot and hyphen"
|
|
)
|
|
if self.train_data_dir.value is None:
|
|
bad_fields.append("Data Training Directory cannot be empty")
|
|
if self.output_dir.value is None:
|
|
bad_fields.append("The Output Destination Directory cannot be empty")
|
|
if len(bad_fields) > 0:
|
|
message = "The following problems were detected and must be corrected:"
|
|
for problem in bad_fields:
|
|
message += f"\n* {problem}"
|
|
npyscreen.notify_confirm(message)
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def get_model_names(self) -> Tuple[List[str], int]:
|
|
conf = OmegaConf.load(os.path.join(Globals.root, "configs/models.yaml"))
|
|
model_names = [
|
|
idx
|
|
for idx in sorted(list(conf.keys()))
|
|
if conf[idx].get("format", None) == "diffusers"
|
|
]
|
|
defaults = [
|
|
idx
|
|
for idx in range(len(model_names))
|
|
if "default" in conf[model_names[idx]]
|
|
]
|
|
default = defaults[0] if len(defaults) > 0 else 0
|
|
return (model_names, default)
|
|
|
|
def marshall_arguments(self) -> dict:
|
|
args = dict()
|
|
|
|
# the choices
|
|
args.update(
|
|
model=self.model_names[self.model.value[0]],
|
|
resolution=self.resolutions[self.resolution.value[0]],
|
|
lr_scheduler=self.lr_schedulers[self.lr_scheduler.value[0]],
|
|
mixed_precision=self.precisions[self.mixed_precision.value[0]],
|
|
learnable_property=self.learnable_properties[
|
|
self.learnable_property.value[0]
|
|
],
|
|
)
|
|
|
|
# all the strings and booleans
|
|
for attr in (
|
|
"initializer_token",
|
|
"placeholder_token",
|
|
"train_data_dir",
|
|
"output_dir",
|
|
"scale_lr",
|
|
"center_crop",
|
|
"enable_xformers_memory_efficient_attention",
|
|
):
|
|
args[attr] = getattr(self, attr).value
|
|
|
|
# all the integers
|
|
for attr in (
|
|
"train_batch_size",
|
|
"gradient_accumulation_steps",
|
|
"num_train_epochs",
|
|
"max_train_steps",
|
|
"lr_warmup_steps",
|
|
):
|
|
args[attr] = int(getattr(self, attr).value)
|
|
|
|
# the floats (just one)
|
|
args.update(learning_rate=float(self.learning_rate.value))
|
|
|
|
# a special case
|
|
if self.resume_from_checkpoint.value and Path(self.output_dir.value).exists():
|
|
args["resume_from_checkpoint"] = "latest"
|
|
|
|
return args
|
|
|
|
|
|
class MyApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self, saved_args=None):
|
|
super().__init__()
|
|
self.ti_arguments = None
|
|
self.saved_args = saved_args
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.main = self.addForm(
|
|
"MAIN",
|
|
textualInversionForm,
|
|
name="Textual Inversion Settings",
|
|
saved_args=self.saved_args,
|
|
)
|
|
|
|
|
|
def copy_to_embeddings_folder(args: dict):
|
|
"""
|
|
Copy learned_embeds.bin into the embeddings folder, and offer to
|
|
delete the full model and checkpoints.
|
|
"""
|
|
source = Path(args["output_dir"], "learned_embeds.bin")
|
|
dest_dir_name = args["placeholder_token"].strip("<>")
|
|
destination = Path(Globals.root, "embeddings", dest_dir_name)
|
|
os.makedirs(destination, exist_ok=True)
|
|
print(f">> Training completed. Copying learned_embeds.bin into {str(destination)}")
|
|
shutil.copy(source, destination)
|
|
if (
|
|
input("Delete training logs and intermediate checkpoints? [y] ") or "y"
|
|
).startswith(("y", "Y")):
|
|
shutil.rmtree(Path(args["output_dir"]))
|
|
else:
|
|
print(f'>> Keeping {args["output_dir"]}')
|
|
|
|
|
|
def save_args(args: dict):
|
|
"""
|
|
Save the current argument values to an omegaconf file
|
|
"""
|
|
dest_dir = Path(Globals.root) / TRAINING_DIR
|
|
os.makedirs(dest_dir, exist_ok=True)
|
|
conf_file = dest_dir / CONF_FILE
|
|
conf = OmegaConf.create(args)
|
|
OmegaConf.save(config=conf, f=conf_file)
|
|
|
|
|
|
def previous_args() -> dict:
|
|
"""
|
|
Get the previous arguments used.
|
|
"""
|
|
conf_file = Path(Globals.root) / TRAINING_DIR / CONF_FILE
|
|
try:
|
|
conf = OmegaConf.load(conf_file)
|
|
conf["placeholder_token"] = conf["placeholder_token"].strip("<>")
|
|
except:
|
|
conf = None
|
|
|
|
return conf
|
|
|
|
|
|
def do_front_end(args: Namespace):
|
|
saved_args = previous_args()
|
|
myapplication = MyApplication(saved_args=saved_args)
|
|
myapplication.run()
|
|
|
|
if args := myapplication.ti_arguments:
|
|
os.makedirs(args["output_dir"], exist_ok=True)
|
|
|
|
# Automatically add angle brackets around the trigger
|
|
if not re.match("^<.+>$", args["placeholder_token"]):
|
|
args["placeholder_token"] = f"<{args['placeholder_token']}>"
|
|
|
|
args["only_save_embeds"] = True
|
|
save_args(args)
|
|
|
|
try:
|
|
print(f"DEBUG: args = {args}")
|
|
do_textual_inversion_training(**args)
|
|
copy_to_embeddings_folder(args)
|
|
except Exception as e:
|
|
print("** An exception occurred during training. The exception was:")
|
|
print(str(e))
|
|
print("** DETAILS:")
|
|
print(traceback.format_exc())
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
global_set_root(args.root_dir or Globals.root)
|
|
try:
|
|
if args.front_end:
|
|
do_front_end(args)
|
|
else:
|
|
do_textual_inversion_training(**vars(args))
|
|
except widget.NotEnoughSpaceForWidget as e:
|
|
if str(e).startswith("Height of 1 allocated"):
|
|
print(
|
|
"** You need to have at least one diffusers models defined in models.yaml in order to train"
|
|
)
|
|
else:
|
|
print(f"** A layout error has occurred: {str(e)}")
|
|
sys.exit(-1)
|
|
except AssertionError as e:
|
|
print(str(e))
|
|
sys.exit(-1)
|
|
except KeyboardInterrupt:
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|