mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
8cf9bd47b2
The `Batch` model is fully validated by pydantic on instantiation; we do not need any validation logic for it.
142 lines
5.2 KiB
Python
142 lines
5.2 KiB
Python
import networkx as nx
|
|
import copy
|
|
|
|
from abc import ABC, abstractmethod
|
|
from itertools import product
|
|
from pydantic import BaseModel, Field
|
|
from fastapi_events.handlers.local import local_handler
|
|
from fastapi_events.typing import Event
|
|
|
|
from invokeai.app.services.events import EventServiceBase
|
|
from invokeai.app.services.graph import Graph, GraphExecutionState
|
|
from invokeai.app.services.invoker import Invoker
|
|
from invokeai.app.services.batch_manager_storage import (
|
|
BatchProcessStorageBase,
|
|
BatchSessionNotFoundException,
|
|
Batch,
|
|
BatchProcess,
|
|
BatchSession,
|
|
BatchSessionChanges,
|
|
)
|
|
|
|
|
|
class BatchProcessResponse(BaseModel):
|
|
batch_id: str = Field(description="ID for the batch")
|
|
session_ids: list[str] = Field(description="List of session IDs created for this batch")
|
|
|
|
|
|
class BatchManagerBase(ABC):
|
|
@abstractmethod
|
|
def start(self, invoker: Invoker):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
|
|
pass
|
|
|
|
@abstractmethod
|
|
def run_batch_process(self, batch_id: str):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def cancel_batch_process(self, batch_process_id: str):
|
|
pass
|
|
|
|
|
|
class BatchManager(BatchManagerBase):
|
|
"""Responsible for managing currently running and scheduled batch jobs"""
|
|
|
|
__invoker: Invoker
|
|
__batch_process_storage: BatchProcessStorageBase
|
|
|
|
def __init__(self, batch_process_storage: BatchProcessStorageBase) -> None:
|
|
super().__init__()
|
|
self.__batch_process_storage = batch_process_storage
|
|
|
|
def start(self, invoker: Invoker) -> None:
|
|
self.__invoker = invoker
|
|
local_handler.register(event_name=EventServiceBase.session_event, _func=self.on_event)
|
|
|
|
async def on_event(self, event: Event):
|
|
event_name = event[1]["event"]
|
|
|
|
match event_name:
|
|
case "graph_execution_state_complete":
|
|
await self.process(event, False)
|
|
case "invocation_error":
|
|
await self.process(event, True)
|
|
|
|
return event
|
|
|
|
async def process(self, event: Event, err: bool):
|
|
data = event[1]["data"]
|
|
batch_session = self.__batch_process_storage.get_session(data["graph_execution_state_id"])
|
|
if not batch_session:
|
|
return
|
|
updateSession = BatchSessionChanges(state="error" if err else "completed")
|
|
batch_session = self.__batch_process_storage.update_session_state(
|
|
batch_session.batch_id,
|
|
batch_session.session_id,
|
|
updateSession,
|
|
)
|
|
batch_process = self.__batch_process_storage.get(batch_session.batch_id)
|
|
if not batch_process.canceled:
|
|
self.run_batch_process(batch_process.batch_id)
|
|
|
|
def _create_batch_session(self, batch_process: BatchProcess, batch_indices: list[int]) -> GraphExecutionState:
|
|
graph = batch_process.graph.copy(deep=True)
|
|
batch = batch_process.batch
|
|
g = graph.nx_graph_flat()
|
|
sorted_nodes = nx.topological_sort(g)
|
|
for npath in sorted_nodes:
|
|
node = graph.get_node(npath)
|
|
for index, bdl in enumerate(batch.data):
|
|
relavent_bd = [bd for bd in bdl if bd.node_id in node.id]
|
|
if not relavent_bd:
|
|
continue
|
|
for bd in relavent_bd:
|
|
batch_index = batch_indices[index]
|
|
datum = bd.items[batch_index]
|
|
key = bd.field_name
|
|
node.__dict__[key] = datum
|
|
graph.update_node(npath, node)
|
|
|
|
return GraphExecutionState(graph=graph)
|
|
|
|
def run_batch_process(self, batch_id: str):
|
|
self.__batch_process_storage.start(batch_id)
|
|
try:
|
|
created_session = self.__batch_process_storage.get_created_session(batch_id)
|
|
except BatchSessionNotFoundException:
|
|
return
|
|
ges = self.__invoker.services.graph_execution_manager.get(created_session.session_id)
|
|
self.__invoker.invoke(ges, invoke_all=True)
|
|
|
|
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
|
|
batch_process = BatchProcess(
|
|
batch=batch,
|
|
graph=graph,
|
|
)
|
|
batch_process = self.__batch_process_storage.save(batch_process)
|
|
sessions = self._create_sessions(batch_process)
|
|
return BatchProcessResponse(
|
|
batch_id=batch_process.batch_id,
|
|
session_ids=[session.session_id for session in sessions],
|
|
)
|
|
|
|
def _create_sessions(self, batch_process: BatchProcess) -> list[BatchSession]:
|
|
batch_indices = list()
|
|
sessions = list()
|
|
for batchdata in batch_process.batch.data:
|
|
batch_indices.append(list(range(len(batchdata[0].items))))
|
|
all_batch_indices = product(*batch_indices)
|
|
for bi in all_batch_indices:
|
|
ges = self._create_batch_session(batch_process, bi)
|
|
self.__invoker.services.graph_execution_manager.set(ges)
|
|
batch_session = BatchSession(batch_id=batch_process.batch_id, session_id=ges.id, state="created")
|
|
sessions.append(self.__batch_process_storage.create_session(batch_session))
|
|
return sessions
|
|
|
|
def cancel_batch_process(self, batch_process_id: str):
|
|
self.__batch_process_storage.cancel(batch_process_id)
|