InvokeAI/invokeai/app/services/batch_manager.py
psychedelicious 8cf9bd47b2 chore(backend): remove unnecessary batch validation function
The `Batch` model is fully validated by pydantic on instantiation; we do not need any validation logic for it.
2023-08-17 11:59:47 +10:00

142 lines
5.2 KiB
Python

import networkx as nx
import copy
from abc import ABC, abstractmethod
from itertools import product
from pydantic import BaseModel, Field
from fastapi_events.handlers.local import local_handler
from fastapi_events.typing import Event
from invokeai.app.services.events import EventServiceBase
from invokeai.app.services.graph import Graph, GraphExecutionState
from invokeai.app.services.invoker import Invoker
from invokeai.app.services.batch_manager_storage import (
BatchProcessStorageBase,
BatchSessionNotFoundException,
Batch,
BatchProcess,
BatchSession,
BatchSessionChanges,
)
class BatchProcessResponse(BaseModel):
batch_id: str = Field(description="ID for the batch")
session_ids: list[str] = Field(description="List of session IDs created for this batch")
class BatchManagerBase(ABC):
@abstractmethod
def start(self, invoker: Invoker):
pass
@abstractmethod
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
pass
@abstractmethod
def run_batch_process(self, batch_id: str):
pass
@abstractmethod
def cancel_batch_process(self, batch_process_id: str):
pass
class BatchManager(BatchManagerBase):
"""Responsible for managing currently running and scheduled batch jobs"""
__invoker: Invoker
__batch_process_storage: BatchProcessStorageBase
def __init__(self, batch_process_storage: BatchProcessStorageBase) -> None:
super().__init__()
self.__batch_process_storage = batch_process_storage
def start(self, invoker: Invoker) -> None:
self.__invoker = invoker
local_handler.register(event_name=EventServiceBase.session_event, _func=self.on_event)
async def on_event(self, event: Event):
event_name = event[1]["event"]
match event_name:
case "graph_execution_state_complete":
await self.process(event, False)
case "invocation_error":
await self.process(event, True)
return event
async def process(self, event: Event, err: bool):
data = event[1]["data"]
batch_session = self.__batch_process_storage.get_session(data["graph_execution_state_id"])
if not batch_session:
return
updateSession = BatchSessionChanges(state="error" if err else "completed")
batch_session = self.__batch_process_storage.update_session_state(
batch_session.batch_id,
batch_session.session_id,
updateSession,
)
batch_process = self.__batch_process_storage.get(batch_session.batch_id)
if not batch_process.canceled:
self.run_batch_process(batch_process.batch_id)
def _create_batch_session(self, batch_process: BatchProcess, batch_indices: list[int]) -> GraphExecutionState:
graph = batch_process.graph.copy(deep=True)
batch = batch_process.batch
g = graph.nx_graph_flat()
sorted_nodes = nx.topological_sort(g)
for npath in sorted_nodes:
node = graph.get_node(npath)
for index, bdl in enumerate(batch.data):
relavent_bd = [bd for bd in bdl if bd.node_id in node.id]
if not relavent_bd:
continue
for bd in relavent_bd:
batch_index = batch_indices[index]
datum = bd.items[batch_index]
key = bd.field_name
node.__dict__[key] = datum
graph.update_node(npath, node)
return GraphExecutionState(graph=graph)
def run_batch_process(self, batch_id: str):
self.__batch_process_storage.start(batch_id)
try:
created_session = self.__batch_process_storage.get_created_session(batch_id)
except BatchSessionNotFoundException:
return
ges = self.__invoker.services.graph_execution_manager.get(created_session.session_id)
self.__invoker.invoke(ges, invoke_all=True)
def create_batch_process(self, batch: Batch, graph: Graph) -> BatchProcessResponse:
batch_process = BatchProcess(
batch=batch,
graph=graph,
)
batch_process = self.__batch_process_storage.save(batch_process)
sessions = self._create_sessions(batch_process)
return BatchProcessResponse(
batch_id=batch_process.batch_id,
session_ids=[session.session_id for session in sessions],
)
def _create_sessions(self, batch_process: BatchProcess) -> list[BatchSession]:
batch_indices = list()
sessions = list()
for batchdata in batch_process.batch.data:
batch_indices.append(list(range(len(batchdata[0].items))))
all_batch_indices = product(*batch_indices)
for bi in all_batch_indices:
ges = self._create_batch_session(batch_process, bi)
self.__invoker.services.graph_execution_manager.set(ges)
batch_session = BatchSession(batch_id=batch_process.batch_id, session_id=ges.id, state="created")
sessions.append(self.__batch_process_storage.create_session(batch_session))
return sessions
def cancel_batch_process(self, batch_process_id: str):
self.__batch_process_storage.cancel(batch_process_id)