mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
109 lines
4.1 KiB
Python
109 lines
4.1 KiB
Python
"""SAMPLING ONLY."""
|
|
|
|
import torch
|
|
from ldm.models.diffusion.shared_invokeai_diffusion import InvokeAIDiffuserComponent
|
|
from ldm.models.diffusion.sampler import Sampler
|
|
from ldm.modules.diffusionmodules.util import noise_like
|
|
|
|
class DDIMSampler(Sampler):
|
|
def __init__(self, model, schedule='linear', device=None, **kwargs):
|
|
super().__init__(model,schedule,model.num_timesteps,device)
|
|
|
|
self.invokeai_diffuser = InvokeAIDiffuserComponent(self.model,
|
|
model_forward_callback = lambda x, sigma, cond: self.model.apply_model(x, sigma, cond))
|
|
|
|
def prepare_to_sample(self, t_enc, **kwargs):
|
|
super().prepare_to_sample(t_enc, **kwargs)
|
|
|
|
extra_conditioning_info = kwargs.get('extra_conditioning_info', None)
|
|
|
|
if extra_conditioning_info is not None and extra_conditioning_info.wants_cross_attention_control:
|
|
self.invokeai_diffuser.setup_cross_attention_control(extra_conditioning_info, step_count = t_enc)
|
|
else:
|
|
self.invokeai_diffuser.remove_cross_attention_control()
|
|
|
|
|
|
# This is the central routine
|
|
@torch.no_grad()
|
|
def p_sample(
|
|
self,
|
|
x,
|
|
c,
|
|
t,
|
|
index,
|
|
repeat_noise=False,
|
|
use_original_steps=False,
|
|
quantize_denoised=False,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
step_count:int=1000, # total number of steps
|
|
**kwargs,
|
|
):
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
if (
|
|
unconditional_conditioning is None
|
|
or unconditional_guidance_scale == 1.0
|
|
):
|
|
# damian0815 would like to know when/if this code path is used
|
|
e_t = self.model.apply_model(x, t, c)
|
|
else:
|
|
step_index = step_count-(index+1)
|
|
e_t = self.invokeai_diffuser.do_diffusion_step(x, t,
|
|
unconditional_conditioning, c,
|
|
unconditional_guidance_scale,
|
|
step_index=step_index)
|
|
|
|
if score_corrector is not None:
|
|
assert self.model.parameterization == 'eps'
|
|
e_t = score_corrector.modify_score(
|
|
self.model, e_t, x, t, c, **corrector_kwargs
|
|
)
|
|
|
|
alphas = (
|
|
self.model.alphas_cumprod
|
|
if use_original_steps
|
|
else self.ddim_alphas
|
|
)
|
|
alphas_prev = (
|
|
self.model.alphas_cumprod_prev
|
|
if use_original_steps
|
|
else self.ddim_alphas_prev
|
|
)
|
|
sqrt_one_minus_alphas = (
|
|
self.model.sqrt_one_minus_alphas_cumprod
|
|
if use_original_steps
|
|
else self.ddim_sqrt_one_minus_alphas
|
|
)
|
|
sigmas = (
|
|
self.model.ddim_sigmas_for_original_num_steps
|
|
if use_original_steps
|
|
else self.ddim_sigmas
|
|
)
|
|
# select parameters corresponding to the currently considered timestep
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
|
sqrt_one_minus_at = torch.full(
|
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
|
)
|
|
|
|
# current prediction for x_0
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
if quantize_denoised:
|
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
|
# direction pointing to x_t
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
|
noise = (
|
|
sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
|
)
|
|
if noise_dropout > 0.0:
|
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
|
return x_prev, pred_x0, None
|
|
|