mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
396 lines
13 KiB
Python
396 lines
13 KiB
Python
# Copyright (c) 2022 Kyle Schouviller (https://github.com/kyle0654)
|
|
|
|
|
|
from typing import Any, Optional
|
|
|
|
from invokeai.app.services.invocation_processor.invocation_processor_common import ProgressImage
|
|
from invokeai.app.services.session_queue.session_queue_common import (
|
|
BatchStatus,
|
|
EnqueueBatchResult,
|
|
SessionQueueItem,
|
|
SessionQueueStatus,
|
|
)
|
|
from invokeai.app.util.misc import get_timestamp
|
|
from invokeai.backend.model_management.model_manager import ModelInfo
|
|
from invokeai.backend.model_management.models.base import BaseModelType, ModelType, SubModelType
|
|
|
|
|
|
class EventServiceBase:
|
|
queue_event: str = "queue_event"
|
|
model_event: str = "model_event"
|
|
|
|
"""Basic event bus, to have an empty stand-in when not needed"""
|
|
|
|
def dispatch(self, event_name: str, payload: Any) -> None:
|
|
pass
|
|
|
|
def __emit_queue_event(self, event_name: str, payload: dict) -> None:
|
|
"""Queue events are emitted to a room with queue_id as the room name"""
|
|
payload["timestamp"] = get_timestamp()
|
|
self.dispatch(
|
|
event_name=EventServiceBase.queue_event,
|
|
payload={"event": event_name, "data": payload},
|
|
)
|
|
|
|
def __emit_model_event(self, event_name: str, payload: dict) -> None:
|
|
payload["timestamp"] = get_timestamp()
|
|
self.dispatch(
|
|
event_name=EventServiceBase.model_event,
|
|
payload={"event": event_name, "data": payload},
|
|
)
|
|
|
|
# Define events here for every event in the system.
|
|
# This will make them easier to integrate until we find a schema generator.
|
|
def emit_generator_progress(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
node: dict,
|
|
source_node_id: str,
|
|
progress_image: Optional[ProgressImage],
|
|
step: int,
|
|
order: int,
|
|
total_steps: int,
|
|
) -> None:
|
|
"""Emitted when there is generation progress"""
|
|
self.__emit_queue_event(
|
|
event_name="generator_progress",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"node_id": node.get("id"),
|
|
"source_node_id": source_node_id,
|
|
"progress_image": progress_image.model_dump() if progress_image is not None else None,
|
|
"step": step,
|
|
"order": order,
|
|
"total_steps": total_steps,
|
|
},
|
|
)
|
|
|
|
def emit_invocation_complete(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
result: dict,
|
|
node: dict,
|
|
source_node_id: str,
|
|
) -> None:
|
|
"""Emitted when an invocation has completed"""
|
|
self.__emit_queue_event(
|
|
event_name="invocation_complete",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"node": node,
|
|
"source_node_id": source_node_id,
|
|
"result": result,
|
|
},
|
|
)
|
|
|
|
def emit_invocation_error(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
node: dict,
|
|
source_node_id: str,
|
|
error_type: str,
|
|
error: str,
|
|
) -> None:
|
|
"""Emitted when an invocation has completed"""
|
|
self.__emit_queue_event(
|
|
event_name="invocation_error",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"node": node,
|
|
"source_node_id": source_node_id,
|
|
"error_type": error_type,
|
|
"error": error,
|
|
},
|
|
)
|
|
|
|
def emit_invocation_started(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
node: dict,
|
|
source_node_id: str,
|
|
) -> None:
|
|
"""Emitted when an invocation has started"""
|
|
self.__emit_queue_event(
|
|
event_name="invocation_started",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"node": node,
|
|
"source_node_id": source_node_id,
|
|
},
|
|
)
|
|
|
|
def emit_graph_execution_complete(
|
|
self, queue_id: str, queue_item_id: int, queue_batch_id: str, graph_execution_state_id: str
|
|
) -> None:
|
|
"""Emitted when a session has completed all invocations"""
|
|
self.__emit_queue_event(
|
|
event_name="graph_execution_state_complete",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
},
|
|
)
|
|
|
|
def emit_model_load_started(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
submodel: SubModelType,
|
|
) -> None:
|
|
"""Emitted when a model is requested"""
|
|
self.__emit_queue_event(
|
|
event_name="model_load_started",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"model_name": model_name,
|
|
"base_model": base_model,
|
|
"model_type": model_type,
|
|
"submodel": submodel,
|
|
},
|
|
)
|
|
|
|
def emit_model_load_completed(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
model_name: str,
|
|
base_model: BaseModelType,
|
|
model_type: ModelType,
|
|
submodel: SubModelType,
|
|
model_info: ModelInfo,
|
|
) -> None:
|
|
"""Emitted when a model is correctly loaded (returns model info)"""
|
|
self.__emit_queue_event(
|
|
event_name="model_load_completed",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"model_name": model_name,
|
|
"base_model": base_model,
|
|
"model_type": model_type,
|
|
"submodel": submodel,
|
|
"hash": model_info.hash,
|
|
"location": str(model_info.location),
|
|
"precision": str(model_info.precision),
|
|
},
|
|
)
|
|
|
|
def emit_session_retrieval_error(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
error_type: str,
|
|
error: str,
|
|
) -> None:
|
|
"""Emitted when session retrieval fails"""
|
|
self.__emit_queue_event(
|
|
event_name="session_retrieval_error",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"error_type": error_type,
|
|
"error": error,
|
|
},
|
|
)
|
|
|
|
def emit_invocation_retrieval_error(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
node_id: str,
|
|
error_type: str,
|
|
error: str,
|
|
) -> None:
|
|
"""Emitted when invocation retrieval fails"""
|
|
self.__emit_queue_event(
|
|
event_name="invocation_retrieval_error",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
"node_id": node_id,
|
|
"error_type": error_type,
|
|
"error": error,
|
|
},
|
|
)
|
|
|
|
def emit_session_canceled(
|
|
self,
|
|
queue_id: str,
|
|
queue_item_id: int,
|
|
queue_batch_id: str,
|
|
graph_execution_state_id: str,
|
|
) -> None:
|
|
"""Emitted when a session is canceled"""
|
|
self.__emit_queue_event(
|
|
event_name="session_canceled",
|
|
payload={
|
|
"queue_id": queue_id,
|
|
"queue_item_id": queue_item_id,
|
|
"queue_batch_id": queue_batch_id,
|
|
"graph_execution_state_id": graph_execution_state_id,
|
|
},
|
|
)
|
|
|
|
def emit_queue_item_status_changed(
|
|
self,
|
|
session_queue_item: SessionQueueItem,
|
|
batch_status: BatchStatus,
|
|
queue_status: SessionQueueStatus,
|
|
) -> None:
|
|
"""Emitted when a queue item's status changes"""
|
|
self.__emit_queue_event(
|
|
event_name="queue_item_status_changed",
|
|
payload={
|
|
"queue_id": queue_status.queue_id,
|
|
"queue_item": {
|
|
"queue_id": session_queue_item.queue_id,
|
|
"item_id": session_queue_item.item_id,
|
|
"status": session_queue_item.status,
|
|
"batch_id": session_queue_item.batch_id,
|
|
"session_id": session_queue_item.session_id,
|
|
"error": session_queue_item.error,
|
|
"created_at": str(session_queue_item.created_at) if session_queue_item.created_at else None,
|
|
"updated_at": str(session_queue_item.updated_at) if session_queue_item.updated_at else None,
|
|
"started_at": str(session_queue_item.started_at) if session_queue_item.started_at else None,
|
|
"completed_at": str(session_queue_item.completed_at) if session_queue_item.completed_at else None,
|
|
},
|
|
"batch_status": batch_status.model_dump(),
|
|
"queue_status": queue_status.model_dump(),
|
|
},
|
|
)
|
|
|
|
def emit_batch_enqueued(self, enqueue_result: EnqueueBatchResult) -> None:
|
|
"""Emitted when a batch is enqueued"""
|
|
self.__emit_queue_event(
|
|
event_name="batch_enqueued",
|
|
payload={
|
|
"queue_id": enqueue_result.queue_id,
|
|
"batch_id": enqueue_result.batch.batch_id,
|
|
"enqueued": enqueue_result.enqueued,
|
|
},
|
|
)
|
|
|
|
def emit_queue_cleared(self, queue_id: str) -> None:
|
|
"""Emitted when the queue is cleared"""
|
|
self.__emit_queue_event(
|
|
event_name="queue_cleared",
|
|
payload={"queue_id": queue_id},
|
|
)
|
|
|
|
def emit_model_install_started(self, source: str) -> None:
|
|
"""
|
|
Emitted when an install job is started.
|
|
|
|
:param source: Source of the model; local path, repo_id or url
|
|
"""
|
|
self.__emit_model_event(
|
|
event_name="model_install_started",
|
|
payload={
|
|
"source": source
|
|
},
|
|
)
|
|
|
|
def emit_model_install_completed(self, source: str, key: str) -> None:
|
|
"""
|
|
Emitted when an install job is completed successfully.
|
|
|
|
:param source: Source of the model; local path, repo_id or url
|
|
:param key: Model config record key
|
|
"""
|
|
self.__emit_model_event(
|
|
event_name="model_install_completed",
|
|
payload={
|
|
"source": source,
|
|
"key": key,
|
|
},
|
|
)
|
|
|
|
def emit_model_install_progress(self,
|
|
source: str,
|
|
current_bytes: int,
|
|
total_bytes: int,
|
|
) -> None:
|
|
"""
|
|
Emitted while the install job is in progress.
|
|
(Downloaded models only)
|
|
|
|
:param source: Source of the model
|
|
:param current_bytes: Number of bytes downloaded so far
|
|
:param total_bytes: Total bytes to download
|
|
"""
|
|
self.__emit_model_event(
|
|
event_name="model_install_progress",
|
|
payload={
|
|
"source": source,
|
|
"current_bytes": int,
|
|
"total_bytes": int,
|
|
},
|
|
)
|
|
|
|
|
|
def emit_model_install_error(self,
|
|
source: str,
|
|
error_type: str,
|
|
error: str,
|
|
) -> None:
|
|
"""
|
|
Emitted when an install job encounters an exception.
|
|
|
|
:param source: Source of the model
|
|
:param exception: The exception that raised the error
|
|
"""
|
|
self.__emit_model_event(
|
|
event_name="model_install_error",
|
|
payload={
|
|
"source": source,
|
|
"error_type": error_type,
|
|
"error": error,
|
|
},
|
|
)
|