InvokeAI/tests/test_model_probe.py
Lincoln Stein dfcf38be91 BREAKING CHANGES: invocations now require model key, not base/type/name
- Implement new model loader and modify invocations and embeddings

- Finish implementation loaders for all models currently supported by
  InvokeAI.

- Move lora, textual_inversion, and model patching support into
  backend/embeddings.

- Restore support for model cache statistics collection (a little ugly,
  needs work).

- Fixed up invocations that load and patch models.

- Move seamless and silencewarnings utils into better location
2024-02-15 17:56:01 +11:00

31 lines
1009 B
Python

from pathlib import Path
import pytest
from invokeai.backend.model_manager import BaseModelType, ModelRepoVariant
from invokeai.backend.model_manager.probe import VaeFolderProbe
@pytest.mark.parametrize(
"vae_path,expected_type",
[
("sd-vae-ft-mse", BaseModelType.StableDiffusion1),
("sdxl-vae", BaseModelType.StableDiffusionXL),
("taesd", BaseModelType.StableDiffusion1),
("taesdxl", BaseModelType.StableDiffusionXL),
],
)
def test_get_base_type(vae_path: str, expected_type: BaseModelType, datadir: Path):
sd1_vae_path = datadir / "vae" / vae_path
probe = VaeFolderProbe(sd1_vae_path)
base_type = probe.get_base_type()
assert base_type == expected_type
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.DEFAULT
def test_repo_variant(datadir: Path):
probe = VaeFolderProbe(datadir / "vae" / "taesdxl-fp16")
repo_variant = probe.get_repo_variant()
assert repo_variant == ModelRepoVariant.FP16