InvokeAI/invokeai/frontend/install/model_install.py

802 lines
29 KiB
Python

#!/usr/bin/env python
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
# Before running stable-diffusion on an internet-isolated machine,
# run this script from one with internet connectivity. The
# two machines must share a common .cache directory.
"""
This is the npyscreen frontend to the model installation application.
The work is actually done in backend code in model_install_backend.py.
"""
import argparse
import curses
import sys
import textwrap
import traceback
from argparse import Namespace
from multiprocessing import Process
from multiprocessing.connection import Connection, Pipe
from pathlib import Path
from shutil import get_terminal_size
import logging
import npyscreen
import torch
from npyscreen import widget
from invokeai.backend.util.logging import InvokeAILogger
from invokeai.backend.install.model_install_backend import (
ModelInstallList,
InstallSelections,
ModelInstall,
SchedulerPredictionType,
)
from invokeai.backend.model_management import ModelManager, ModelType
from invokeai.backend.util import choose_precision, choose_torch_device
from invokeai.frontend.install.widgets import (
CenteredTitleText,
MultiSelectColumns,
SingleSelectColumns,
TextBox,
BufferBox,
FileBox,
set_min_terminal_size,
select_stable_diffusion_config_file,
CyclingForm,
MIN_COLS,
MIN_LINES,
)
from invokeai.app.services.config import InvokeAIAppConfig
config = InvokeAIAppConfig.get_config()
logger = InvokeAILogger.getLogger()
# build a table mapping all non-printable characters to None
# for stripping control characters
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
NOPRINT_TRANS_TABLE = {
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
}
def make_printable(s:str)->str:
'''Replace non-printable characters in a string'''
return s.translate(NOPRINT_TRANS_TABLE)
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
# for responsive resizing set to False, but this seems to cause a crash!
FIX_MINIMUM_SIZE_WHEN_CREATED = True
# for persistence
current_tab = 0
def __init__(self, parentApp, name, multipage=False, *args, **keywords):
self.multipage = multipage
self.subprocess = None
super().__init__(parentApp=parentApp, name=name, *args, **keywords)
def create(self):
self.keypress_timeout = 10
self.counter = 0
self.subprocess_connection = None
if not config.model_conf_path.exists():
with open(config.model_conf_path,'w') as file:
print('# InvokeAI model configuration file',file=file)
self.installer = ModelInstall(config)
self.all_models = self.installer.all_models()
self.starter_models = self.installer.starter_models()
self.model_labels = self._get_model_labels()
window_width, window_height = get_terminal_size()
self.nextrely -= 1
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,",
editable=False,
color="CAUTION",
)
self.add_widget_intelligent(
npyscreen.FixedText,
value="Use cursor arrows to make a selection, and space to toggle checkboxes.",
editable=False,
color="CAUTION",
)
self.nextrely += 1
self.tabs = self.add_widget_intelligent(
SingleSelectColumns,
values=[
'STARTER MODELS',
'MORE MODELS',
'CONTROLNETS',
'LORA/LYCORIS',
'TEXTUAL INVERSION',
],
value=[self.current_tab],
columns = 5,
max_height = 2,
relx=8,
scroll_exit = True,
)
self.tabs.on_changed = self._toggle_tables
top_of_table = self.nextrely
self.starter_pipelines = self.add_starter_pipelines()
bottom_of_table = self.nextrely
self.nextrely = top_of_table
self.pipeline_models = self.add_pipeline_widgets(
model_type=ModelType.Main,
window_width=window_width,
exclude = self.starter_models
)
# self.pipeline_models['autoload_pending'] = True
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.controlnet_models = self.add_model_widgets(
model_type=ModelType.ControlNet,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.lora_models = self.add_model_widgets(
model_type=ModelType.Lora,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = top_of_table
self.ti_models = self.add_model_widgets(
model_type=ModelType.TextualInversion,
window_width=window_width,
)
bottom_of_table = max(bottom_of_table,self.nextrely)
self.nextrely = bottom_of_table+1
self.monitor = self.add_widget_intelligent(
BufferBox,
name='Log Messages',
editable=False,
max_height = 10,
)
self.nextrely += 1
done_label = "APPLY CHANGES"
back_label = "BACK"
if self.multipage:
self.back_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=back_label,
rely=-3,
when_pressed_function=self.on_back,
)
else:
self.ok_button = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=done_label,
relx=(window_width - len(done_label)) // 2,
rely=-3,
when_pressed_function=self.on_execute
)
label = "APPLY CHANGES & EXIT"
self.done = self.add_widget_intelligent(
npyscreen.ButtonPress,
name=label,
rely=-3,
relx=window_width-len(label)-15,
when_pressed_function=self.on_done,
)
# This restores the selected page on return from an installation
for i in range(1,self.current_tab+1):
self.tabs.h_cursor_line_down(1)
self._toggle_tables([self.current_tab])
############# diffusers tab ##########
def add_starter_pipelines(self)->dict[str, npyscreen.widget]:
'''Add widgets responsible for selecting diffusers models'''
widgets = dict()
models = self.all_models
starters = self.starter_models
starter_model_labels = self.model_labels
self.installed_models = sorted(
[x for x in starters if models[x].installed]
)
widgets.update(
label1 = self.add_widget_intelligent(
CenteredTitleText,
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
editable=False,
labelColor="CAUTION",
)
)
self.nextrely -= 1
# if user has already installed some initial models, then don't patronize them
# by showing more recommendations
show_recommended = len(self.installed_models)==0
keys = [x for x in models.keys() if x in starters]
widgets.update(
models_selected = self.add_widget_intelligent(
MultiSelectColumns,
columns=1,
name="Install Starter Models",
values=[starter_model_labels[x] for x in keys],
value=[
keys.index(x)
for x in keys
if (show_recommended and models[x].recommended) \
or (x in self.installed_models)
],
max_height=len(starters) + 1,
relx=4,
scroll_exit=True,
),
models = keys,
)
self.nextrely += 1
return widgets
############# Add a set of model install widgets ########
def add_model_widgets(self,
model_type: ModelType,
window_width: int=120,
install_prompt: str=None,
exclude: set=set(),
)->dict[str,npyscreen.widget]:
'''Generic code to create model selection widgets'''
widgets = dict()
model_list = [x for x in self.all_models if self.all_models[x].model_type==model_type and not x in exclude]
model_labels = [self.model_labels[x] for x in model_list]
if len(model_list) > 0:
max_width = max([len(x) for x in model_labels])
columns = window_width // (max_width+8) # 8 characters for "[x] " and padding
columns = min(len(model_list),columns) or 1
prompt = install_prompt or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk."
widgets.update(
label1 = self.add_widget_intelligent(
CenteredTitleText,
name=prompt,
editable=False,
labelColor="CAUTION",
)
)
widgets.update(
models_selected = self.add_widget_intelligent(
MultiSelectColumns,
columns=columns,
name=f"Install {model_type} Models",
values=model_labels,
value=[
model_list.index(x)
for x in model_list
if self.all_models[x].installed
],
max_height=len(model_list)//columns + 1,
relx=4,
scroll_exit=True,
),
models = model_list,
)
self.nextrely += 1
widgets.update(
download_ids = self.add_widget_intelligent(
TextBox,
name = "Additional URLs, or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
max_height=4,
scroll_exit=True,
editable=True,
)
)
return widgets
### Tab for arbitrary diffusers widgets ###
def add_pipeline_widgets(self,
model_type: ModelType=ModelType.Main,
window_width: int=120,
**kwargs,
)->dict[str,npyscreen.widget]:
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
to support the autoload directory'''
widgets = self.add_model_widgets(
model_type = model_type,
window_width = window_width,
install_prompt=f"Additional {model_type.value.title()} models already installed.",
**kwargs,
)
return widgets
def resize(self):
super().resize()
if (s := self.starter_pipelines.get("models_selected")):
keys = [x for x in self.all_models.keys() if x in self.starter_models]
s.values = [self.model_labels[x] for x in keys]
def _toggle_tables(self, value=None):
selected_tab = value[0]
widgets = [
self.starter_pipelines,
self.pipeline_models,
self.controlnet_models,
self.lora_models,
self.ti_models,
]
for group in widgets:
for k,v in group.items():
try:
v.hidden = True
v.editable = False
except:
pass
for k,v in widgets[selected_tab].items():
try:
v.hidden = False
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
v.editable = True
except:
pass
self.__class__.current_tab = selected_tab # for persistence
self.display()
def _get_model_labels(self) -> dict[str,str]:
window_width, window_height = get_terminal_size()
checkbox_width = 4
spacing_width = 2
models = self.all_models
label_width = max([len(models[x].name) for x in models])
description_width = window_width - label_width - checkbox_width - spacing_width
result = dict()
for x in models.keys():
description = models[x].description
description = description[0 : description_width - 3] + "..." \
if description and len(description) > description_width \
else description if description else ''
result[x] = f"%-{label_width}s %s" % (models[x].name, description)
return result
def _get_columns(self) -> int:
window_width, window_height = get_terminal_size()
cols = (
4
if window_width > 240
else 3
if window_width > 160
else 2
if window_width > 80
else 1
)
return min(cols, len(self.installed_models))
def on_execute(self):
self.monitor.entry_widget.buffer(['Processing...'],scroll_end=True)
self.marshall_arguments()
app = self.parentApp
self.ok_button.hidden = True
self.display()
# for communication with the subprocess
parent_conn, child_conn = Pipe()
p = Process(
target = process_and_execute,
kwargs=dict(
opt = app.program_opts,
selections = app.install_selections,
conn_out = child_conn,
)
)
p.start()
child_conn.close()
self.subprocess_connection = parent_conn
self.subprocess = p
app.install_selections = InstallSelections()
# process_and_execute(app.opt, app.install_selections)
def on_back(self):
self.parentApp.switchFormPrevious()
self.editing = False
def on_cancel(self):
self.parentApp.setNextForm(None)
self.parentApp.user_cancelled = True
self.editing = False
def on_done(self):
self.marshall_arguments()
self.parentApp.setNextForm(None)
self.parentApp.user_cancelled = False
self.editing = False
########## This routine monitors the child process that is performing model installation and removal #####
def while_waiting(self):
'''Called during idle periods. Main task is to update the Log Messages box with messages
from the child process that does the actual installation/removal'''
c = self.subprocess_connection
if not c:
return
monitor_widget = self.monitor.entry_widget
while c.poll():
try:
data = c.recv_bytes().decode('utf-8')
data.strip('\n')
# processing child is requesting user input to select the
# right configuration file
if data.startswith('*need v2 config'):
_,model_path,*_ = data.split(":",2)
self._return_v2_config(model_path)
# processing child is done
elif data=='*done*':
self._close_subprocess_and_regenerate_form()
break
# update the log message box
else:
data=make_printable(data)
data=data.replace('[A','')
monitor_widget.buffer(
textwrap.wrap(data,
width=monitor_widget.width,
subsequent_indent=' ',
),
scroll_end=True
)
self.display()
except (EOFError,OSError):
self.subprocess_connection = None
def _return_v2_config(self,model_path: str):
c = self.subprocess_connection
model_name = Path(model_path).name
message = select_stable_diffusion_config_file(model_name=model_name)
c.send_bytes(message.encode('utf-8'))
def _close_subprocess_and_regenerate_form(self):
app = self.parentApp
self.subprocess_connection.close()
self.subprocess_connection = None
self.monitor.entry_widget.buffer(['** Action Complete **'])
self.display()
# rebuild the form, saving and restoring some of the fields that need to be preserved.
saved_messages = self.monitor.entry_widget.values
# autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# autoscan = self.pipeline_models['autoscan_on_startup'].value
app.main_form = app.addForm(
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
)
app.switchForm("MAIN")
app.main_form.monitor.entry_widget.values = saved_messages
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
# app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
# app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
def marshall_arguments(self):
"""
Assemble arguments and store as attributes of the application:
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
True => Install
False => Remove
.scan_directory: Path to a directory of models to scan and import
.autoscan_on_startup: True if invokeai should scan and import at startup time
.import_model_paths: list of URLs, repo_ids and file paths to import
"""
selections = self.parentApp.install_selections
all_models = self.all_models
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
ui_sections = [self.starter_pipelines, self.pipeline_models,
self.controlnet_models, self.lora_models, self.ti_models]
for section in ui_sections:
if not 'models_selected' in section:
continue
selected = set([section['models'][x] for x in section['models_selected'].value])
models_to_install = [x for x in selected if not self.all_models[x].installed]
models_to_remove = [x for x in section['models'] if x not in selected and self.all_models[x].installed]
selections.remove_models.extend(models_to_remove)
selections.install_models.extend(all_models[x].path or all_models[x].repo_id \
for x in models_to_install if all_models[x].path or all_models[x].repo_id)
# models located in the 'download_ids" section
for section in ui_sections:
if downloads := section.get('download_ids'):
selections.install_models.extend(downloads.value.split())
# load directory and whether to scan on startup
# if self.parentApp.autoload_pending:
# selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
# self.parentApp.autoload_pending = False
# selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
class AddModelApplication(npyscreen.NPSAppManaged):
def __init__(self,opt):
super().__init__()
self.program_opts = opt
self.user_cancelled = False
# self.autoload_pending = True
self.install_selections = InstallSelections()
def onStart(self):
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
self.main_form = self.addForm(
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True,
)
class StderrToMessage():
def __init__(self, connection: Connection):
self.connection = connection
def write(self, data:str):
self.connection.send_bytes(data.encode('utf-8'))
def flush(self):
pass
# --------------------------------------------------------
def ask_user_for_prediction_type(model_path: Path,
tui_conn: Connection=None
)->SchedulerPredictionType:
if tui_conn:
logger.debug('Waiting for user response...')
return _ask_user_for_pt_tui(model_path, tui_conn)
else:
return _ask_user_for_pt_cmdline(model_path)
def _ask_user_for_pt_cmdline(model_path: Path)->SchedulerPredictionType:
choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None]
print(
f"""
Please select the type of the V2 checkpoint named {model_path.name}:
[1] A model based on Stable Diffusion v2 trained on 512 pixel images (SD-2-base)
[2] A model based on Stable Diffusion v2 trained on 768 pixel images (SD-2-768)
[3] Skip this model and come back later.
"""
)
choice = None
ok = False
while not ok:
try:
choice = input('select> ').strip()
choice = choices[int(choice)-1]
ok = True
except (ValueError, IndexError):
print(f'{choice} is not a valid choice')
except EOFError:
return
return choice
def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection)->SchedulerPredictionType:
try:
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
# note that we don't do any status checking here
response = tui_conn.recv_bytes().decode('utf-8')
if response is None:
return None
elif response == 'epsilon':
return SchedulerPredictionType.epsilon
elif response == 'v':
return SchedulerPredictionType.VPrediction
elif response == 'abort':
logger.info('Conversion aborted')
return None
else:
return response
except:
return None
# --------------------------------------------------------
def process_and_execute(opt: Namespace,
selections: InstallSelections,
conn_out: Connection=None,
):
# set up so that stderr is sent to conn_out
if conn_out:
translator = StderrToMessage(conn_out)
sys.stderr = translator
sys.stdout = translator
logger = InvokeAILogger.getLogger()
logger.handlers.clear()
logger.addHandler(logging.StreamHandler(translator))
installer = ModelInstall(config, prediction_type_helper=lambda x: ask_user_for_prediction_type(x,conn_out))
installer.install(selections)
if conn_out:
conn_out.send_bytes('*done*'.encode('utf-8'))
conn_out.close()
def do_listings(opt)->bool:
"""List installed models of various sorts, and return
True if any were requested."""
model_manager = ModelManager(config.model_conf_path)
if opt.list_models == 'diffusers':
print("Diffuser models:")
model_manager.print_models()
elif opt.list_models == 'controlnets':
print("Installed Controlnet Models:")
cnm = model_manager.list_controlnet_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
elif opt.list_models == 'loras':
print("Installed LoRA/LyCORIS Models:")
cnm = model_manager.list_lora_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
elif opt.list_models == 'tis':
print("Installed Textual Inversion Embeddings:")
cnm = model_manager.list_ti_models()
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
else:
return False
return True
# --------------------------------------------------------
def select_and_download_models(opt: Namespace):
precision = (
"float32"
if opt.full_precision
else choose_precision(torch.device(choose_torch_device()))
)
config.precision = precision
helper = lambda x: ask_user_for_prediction_type(x)
# if do_listings(opt):
# pass
installer = ModelInstall(config, prediction_type_helper=helper)
if opt.add or opt.delete:
selections = InstallSelections(
install_models = opt.add or [],
remove_models = opt.delete or []
)
installer.install(selections)
elif opt.default_only:
selections = InstallSelections(
install_models = installer.default_model()
)
installer.install(selections)
elif opt.yes_to_all:
selections = InstallSelections(
install_models = installer.recommended_models()
)
installer.install(selections)
# this is where the TUI is called
else:
# needed to support the probe() method running under a subprocess
torch.multiprocessing.set_start_method("spawn")
# the third argument is needed in the Windows 11 environment in
# order to launch and resize a console window running this program
set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-model-install')
installApp = AddModelApplication(opt)
try:
installApp.run()
except KeyboardInterrupt as e:
if hasattr(installApp,'main_form'):
if installApp.main_form.subprocess \
and installApp.main_form.subprocess.is_alive():
logger.info('Terminating subprocesses')
installApp.main_form.subprocess.terminate()
installApp.main_form.subprocess = None
raise e
process_and_execute(opt, installApp.install_selections)
# -------------------------------------
def main():
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
parser.add_argument(
"--add",
nargs="*",
help="List of URLs, local paths or repo_ids of models to install",
)
parser.add_argument(
"--delete",
nargs="*",
help="List of names of models to idelete",
)
parser.add_argument(
"--full-precision",
dest="full_precision",
action=argparse.BooleanOptionalAction,
type=bool,
default=False,
help="use 32-bit weights instead of faster 16-bit weights",
)
parser.add_argument(
"--yes",
"-y",
dest="yes_to_all",
action="store_true",
help='answer "yes" to all prompts',
)
parser.add_argument(
"--default_only",
action="store_true",
help="Only install the default model",
)
parser.add_argument(
"--list-models",
choices=["diffusers","loras","controlnets","tis"],
help="list installed models",
)
parser.add_argument(
"--config_file",
"-c",
dest="config_file",
type=str,
default=None,
help="path to configuration file to create",
)
parser.add_argument(
"--root_dir",
dest="root",
type=str,
default=None,
help="path to root of install directory",
)
opt = parser.parse_args()
invoke_args = []
if opt.root:
invoke_args.extend(['--root',opt.root])
if opt.full_precision:
invoke_args.extend(['--precision','float32'])
config.parse_args(invoke_args)
logger = InvokeAILogger().getLogger(config=config)
if not (config.root_dir / config.conf_path.parent).exists():
logger.info(
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
)
from invokeai.frontend.install import invokeai_configure
invokeai_configure()
sys.exit(0)
try:
select_and_download_models(opt)
except AssertionError as e:
logger.error(e)
sys.exit(-1)
except KeyboardInterrupt:
curses.nocbreak()
curses.echo()
curses.endwin()
logger.info("Goodbye! Come back soon.")
except widget.NotEnoughSpaceForWidget as e:
if str(e).startswith("Height of 1 allocated"):
logger.error(
"Insufficient vertical space for the interface. Please make your window taller and try again"
)
input('Press any key to continue...')
except Exception as e:
if str(e).startswith("addwstr"):
logger.error(
"Insufficient horizontal space for the interface. Please make your window wider and try again."
)
else:
print(f'An exception has occurred: {str(e)} Details:')
print(traceback.format_exc(), file=sys.stderr)
input('Press any key to continue...')
# -------------------------------------
if __name__ == "__main__":
main()