InvokeAI/ldm/util.py
Lincoln Stein 488334710b enable fast switching between models in invoke.py
- This PR enables two new commands in the invoke.py script

 !models         -- list the available models and their cache status
 !switch <model> -- switch to the indicated model

Example:

 invoke> !models
   laion400m            not loaded  Latent Diffusion LAION400M model
   stable-diffusion-1.4     active  Stable Diffusion inference model version 1.4
   waifu-1.3                cached  Waifu anime model version 1.3
 invoke> !switch waifu-1.3
   >> Caching model stable-diffusion-1.4 in system RAM
   >> Retrieving model waifu-1.3 from system RAM cache

The name and descriptions of the models are taken from
`config/models.yaml`. A future enhancement to `model_cache.py` will be
to enable new model stanzas to be added to the file
programmatically. This will be useful for the WebGUI.

More details:

- Use fast switching algorithm described in PR #948
- Models are selected using their configuration stanza name
  given in models.yaml.
- To avoid filling up CPU RAM with cached models, this PR
  implements an LRU cache that monitors available CPU RAM.
- The caching code allows the minimum value of available RAM
  to be adjusted, but invoke.py does not currently have a
  command-line argument that allows you to set it. The
  minimum free RAM is arbitrarily set to 2 GB.
- Add optional description field to configs/models.yaml

Unrelated fixes:
- Added ">>" to CompViz model loading messages in order to make user experience
  more consistent.
- When generating an image greater than defaults, will only warn about possible
  VRAM filling the first time.
- Fixed bug that was causing help message to be printed twice. This involved
  moving the import line for the web backend into the section where it is
  called.

Coauthored by: @ArDiouscuros
2022-10-12 02:37:42 -04:00

238 lines
7.0 KiB
Python

import importlib
import torch
import numpy as np
import math
from collections import abc
from einops import rearrange
from functools import partial
import multiprocessing as mp
from threading import Thread
from queue import Queue
from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new('RGB', wh, color='white')
draw = ImageDraw.Draw(txt)
font = ImageFont.load_default()
nc = int(40 * (wh[0] / 256))
lines = '\n'.join(
xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc)
)
try:
draw.text((0, 0), lines, fill='black', font=font)
except UnicodeEncodeError:
print('Cant encode string for logging. Skipping.')
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(
f' >> {model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.'
)
return total_params
def instantiate_from_config(config, **kwargs):
if not 'target' in config:
if config == '__is_first_stage__':
return None
elif config == '__is_unconditional__':
return None
raise KeyError('Expected key `target` to instantiate.')
return get_obj_from_str(config['target'])(
**config.get('params', dict()), **kwargs
)
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit('.', 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
# create dummy dataset instance
# run prefetching
if idx_to_fn:
res = func(data, worker_id=idx)
else:
res = func(data)
Q.put([idx, res])
Q.put('Done')
def parallel_data_prefetch(
func: callable,
data,
n_proc,
target_data_type='ndarray',
cpu_intensive=True,
use_worker_id=False,
):
# if target_data_type not in ["ndarray", "list"]:
# raise ValueError(
# "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
# )
if isinstance(data, np.ndarray) and target_data_type == 'list':
raise ValueError('list expected but function got ndarray.')
elif isinstance(data, abc.Iterable):
if isinstance(data, dict):
print(
f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
)
data = list(data.values())
if target_data_type == 'ndarray':
data = np.asarray(data)
else:
data = list(data)
else:
raise TypeError(
f'The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}.'
)
if cpu_intensive:
Q = mp.Queue(1000)
proc = mp.Process
else:
Q = Queue(1000)
proc = Thread
# spawn processes
if target_data_type == 'ndarray':
arguments = [
[func, Q, part, i, use_worker_id]
for i, part in enumerate(np.array_split(data, n_proc))
]
else:
step = (
int(len(data) / n_proc + 1)
if len(data) % n_proc != 0
else int(len(data) / n_proc)
)
arguments = [
[func, Q, part, i, use_worker_id]
for i, part in enumerate(
[data[i : i + step] for i in range(0, len(data), step)]
)
]
processes = []
for i in range(n_proc):
p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
processes += [p]
# start processes
print(f'Start prefetching...')
import time
start = time.time()
gather_res = [[] for _ in range(n_proc)]
try:
for p in processes:
p.start()
k = 0
while k < n_proc:
# get result
res = Q.get()
if res == 'Done':
k += 1
else:
gather_res[res[0]] = res[1]
except Exception as e:
print('Exception: ', e)
for p in processes:
p.terminate()
raise e
finally:
for p in processes:
p.join()
print(f'Prefetching complete. [{time.time() - start} sec.]')
if target_data_type == 'ndarray':
if not isinstance(gather_res[0], np.ndarray):
return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
# order outputs
return np.concatenate(gather_res, axis=0)
elif target_data_type == 'list':
out = []
for r in gather_res:
out.extend(r)
return out
else:
return gather_res
def rand_perlin_2d(shape, res, device, fade = lambda t: 6*t**5 - 15*t**4 + 10*t**3):
delta = (res[0] / shape[0], res[1] / shape[1])
d = (shape[0] // res[0], shape[1] // res[1])
grid = torch.stack(torch.meshgrid(torch.arange(0, res[0], delta[0]), torch.arange(0, res[1], delta[1]), indexing='ij'), dim = -1).to(device) % 1
rand_val = torch.rand(res[0]+1, res[1]+1)
angles = 2*math.pi*rand_val
gradients = torch.stack((torch.cos(angles), torch.sin(angles)), dim = -1).to(device)
tile_grads = lambda slice1, slice2: gradients[slice1[0]:slice1[1], slice2[0]:slice2[1]].repeat_interleave(d[0], 0).repeat_interleave(d[1], 1)
dot = lambda grad, shift: (torch.stack((grid[:shape[0],:shape[1],0] + shift[0], grid[:shape[0],:shape[1], 1] + shift[1] ), dim = -1) * grad[:shape[0], :shape[1]]).sum(dim = -1)
n00 = dot(tile_grads([0, -1], [0, -1]), [0, 0]).to(device)
n10 = dot(tile_grads([1, None], [0, -1]), [-1, 0]).to(device)
n01 = dot(tile_grads([0, -1],[1, None]), [0, -1]).to(device)
n11 = dot(tile_grads([1, None], [1, None]), [-1,-1]).to(device)
t = fade(grid[:shape[0], :shape[1]])
return math.sqrt(2) * torch.lerp(torch.lerp(n00, n10, t[..., 0]), torch.lerp(n01, n11, t[..., 0]), t[..., 1]).to(device)