mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
826 lines
30 KiB
Python
826 lines
30 KiB
Python
#!/usr/bin/env python
|
|
# Copyright (c) 2022 Lincoln D. Stein (https://github.com/lstein)
|
|
# Before running stable-diffusion on an internet-isolated machine,
|
|
# run this script from one with internet connectivity. The
|
|
# two machines must share a common .cache directory.
|
|
|
|
"""
|
|
This is the npyscreen frontend to the model installation application.
|
|
The work is actually done in backend code in model_install_backend.py.
|
|
"""
|
|
|
|
import argparse
|
|
import curses
|
|
import sys
|
|
import textwrap
|
|
import traceback
|
|
from argparse import Namespace
|
|
from multiprocessing import Process
|
|
from multiprocessing.connection import Connection, Pipe
|
|
from pathlib import Path
|
|
from shutil import get_terminal_size
|
|
|
|
import logging
|
|
import npyscreen
|
|
import torch
|
|
from npyscreen import widget
|
|
|
|
from invokeai.backend.util.logging import InvokeAILogger
|
|
|
|
from invokeai.backend.install.model_install_backend import (
|
|
ModelInstallList,
|
|
InstallSelections,
|
|
ModelInstall,
|
|
SchedulerPredictionType,
|
|
)
|
|
from invokeai.backend.model_management import ModelManager, ModelType
|
|
from invokeai.backend.util import choose_precision, choose_torch_device
|
|
from invokeai.frontend.install.widgets import (
|
|
CenteredTitleText,
|
|
MultiSelectColumns,
|
|
SingleSelectColumns,
|
|
TextBox,
|
|
BufferBox,
|
|
FileBox,
|
|
set_min_terminal_size,
|
|
select_stable_diffusion_config_file,
|
|
CyclingForm,
|
|
MIN_COLS,
|
|
MIN_LINES,
|
|
)
|
|
from invokeai.app.services.config import InvokeAIAppConfig
|
|
|
|
config = InvokeAIAppConfig.get_config()
|
|
logger = InvokeAILogger.getLogger()
|
|
|
|
# build a table mapping all non-printable characters to None
|
|
# for stripping control characters
|
|
# from https://stackoverflow.com/questions/92438/stripping-non-printable-characters-from-a-string-in-python
|
|
NOPRINT_TRANS_TABLE = {
|
|
i: None for i in range(0, sys.maxunicode + 1) if not chr(i).isprintable()
|
|
}
|
|
|
|
def make_printable(s:str)->str:
|
|
'''Replace non-printable characters in a string'''
|
|
return s.translate(NOPRINT_TRANS_TABLE)
|
|
|
|
class addModelsForm(CyclingForm, npyscreen.FormMultiPage):
|
|
# for responsive resizing set to False, but this seems to cause a crash!
|
|
FIX_MINIMUM_SIZE_WHEN_CREATED = True
|
|
|
|
# for persistence
|
|
current_tab = 0
|
|
|
|
def __init__(self, parentApp, name, multipage=False, *args, **keywords):
|
|
self.multipage = multipage
|
|
self.subprocess = None
|
|
super().__init__(parentApp=parentApp, name=name, *args, **keywords)
|
|
|
|
def create(self):
|
|
self.keypress_timeout = 10
|
|
self.counter = 0
|
|
self.subprocess_connection = None
|
|
|
|
if not config.model_conf_path.exists():
|
|
with open(config.model_conf_path,'w') as file:
|
|
print('# InvokeAI model configuration file',file=file)
|
|
self.installer = ModelInstall(config)
|
|
self.all_models = self.installer.all_models()
|
|
self.starter_models = self.installer.starter_models()
|
|
self.model_labels = self._get_model_labels()
|
|
window_width, window_height = get_terminal_size()
|
|
|
|
self.nextrely -= 1
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Use ctrl-N and ctrl-P to move to the <N>ext and <P>revious fields,",
|
|
editable=False,
|
|
color="CAUTION",
|
|
)
|
|
self.add_widget_intelligent(
|
|
npyscreen.FixedText,
|
|
value="Use cursor arrows to make a selection, and space to toggle checkboxes.",
|
|
editable=False,
|
|
color="CAUTION",
|
|
)
|
|
self.nextrely += 1
|
|
self.tabs = self.add_widget_intelligent(
|
|
SingleSelectColumns,
|
|
values=[
|
|
'STARTER MODELS',
|
|
'MORE MODELS',
|
|
'CONTROLNETS',
|
|
'LORA/LYCORIS',
|
|
'TEXTUAL INVERSION',
|
|
],
|
|
value=[self.current_tab],
|
|
columns = 5,
|
|
max_height = 2,
|
|
relx=8,
|
|
scroll_exit = True,
|
|
)
|
|
self.tabs.on_changed = self._toggle_tables
|
|
|
|
top_of_table = self.nextrely
|
|
self.starter_pipelines = self.add_starter_pipelines()
|
|
bottom_of_table = self.nextrely
|
|
|
|
self.nextrely = top_of_table
|
|
self.pipeline_models = self.add_pipeline_widgets(
|
|
model_type=ModelType.Main,
|
|
window_width=window_width,
|
|
exclude = self.starter_models
|
|
)
|
|
self.pipeline_models['autoload_pending'] = True
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.controlnet_models = self.add_model_widgets(
|
|
model_type=ModelType.ControlNet,
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.lora_models = self.add_model_widgets(
|
|
model_type=ModelType.Lora,
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = top_of_table
|
|
self.ti_models = self.add_model_widgets(
|
|
model_type=ModelType.TextualInversion,
|
|
window_width=window_width,
|
|
)
|
|
bottom_of_table = max(bottom_of_table,self.nextrely)
|
|
|
|
self.nextrely = bottom_of_table+1
|
|
|
|
self.monitor = self.add_widget_intelligent(
|
|
BufferBox,
|
|
name='Log Messages',
|
|
editable=False,
|
|
max_height = 10,
|
|
)
|
|
|
|
self.nextrely += 1
|
|
done_label = "APPLY CHANGES"
|
|
back_label = "BACK"
|
|
if self.multipage:
|
|
self.back_button = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress,
|
|
name=back_label,
|
|
rely=-3,
|
|
when_pressed_function=self.on_back,
|
|
)
|
|
else:
|
|
self.ok_button = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress,
|
|
name=done_label,
|
|
relx=(window_width - len(done_label)) // 2,
|
|
rely=-3,
|
|
when_pressed_function=self.on_execute
|
|
)
|
|
|
|
label = "APPLY CHANGES & EXIT"
|
|
self.done = self.add_widget_intelligent(
|
|
npyscreen.ButtonPress,
|
|
name=label,
|
|
rely=-3,
|
|
relx=window_width-len(label)-15,
|
|
when_pressed_function=self.on_done,
|
|
)
|
|
|
|
# This restores the selected page on return from an installation
|
|
for i in range(1,self.current_tab+1):
|
|
self.tabs.h_cursor_line_down(1)
|
|
self._toggle_tables([self.current_tab])
|
|
|
|
############# diffusers tab ##########
|
|
def add_starter_pipelines(self)->dict[str, npyscreen.widget]:
|
|
'''Add widgets responsible for selecting diffusers models'''
|
|
widgets = dict()
|
|
models = self.all_models
|
|
starters = self.starter_models
|
|
starter_model_labels = self.model_labels
|
|
|
|
self.installed_models = sorted(
|
|
[x for x in starters if models[x].installed]
|
|
)
|
|
|
|
widgets.update(
|
|
label1 = self.add_widget_intelligent(
|
|
CenteredTitleText,
|
|
name="Select from a starter set of Stable Diffusion models from HuggingFace.",
|
|
editable=False,
|
|
labelColor="CAUTION",
|
|
)
|
|
)
|
|
|
|
self.nextrely -= 1
|
|
# if user has already installed some initial models, then don't patronize them
|
|
# by showing more recommendations
|
|
show_recommended = len(self.installed_models)==0
|
|
keys = [x for x in models.keys() if x in starters]
|
|
widgets.update(
|
|
models_selected = self.add_widget_intelligent(
|
|
MultiSelectColumns,
|
|
columns=1,
|
|
name="Install Starter Models",
|
|
values=[starter_model_labels[x] for x in keys],
|
|
value=[
|
|
keys.index(x)
|
|
for x in keys
|
|
if (show_recommended and models[x].recommended) \
|
|
or (x in self.installed_models)
|
|
],
|
|
max_height=len(starters) + 1,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
),
|
|
models = keys,
|
|
)
|
|
|
|
self.nextrely += 1
|
|
return widgets
|
|
|
|
############# Add a set of model install widgets ########
|
|
def add_model_widgets(self,
|
|
model_type: ModelType,
|
|
window_width: int=120,
|
|
install_prompt: str=None,
|
|
exclude: set=set(),
|
|
)->dict[str,npyscreen.widget]:
|
|
'''Generic code to create model selection widgets'''
|
|
widgets = dict()
|
|
model_list = [x for x in self.all_models if self.all_models[x].model_type==model_type and not x in exclude]
|
|
model_labels = [self.model_labels[x] for x in model_list]
|
|
if len(model_list) > 0:
|
|
max_width = max([len(x) for x in model_labels])
|
|
columns = window_width // (max_width+8) # 8 characters for "[x] " and padding
|
|
columns = min(len(model_list),columns) or 1
|
|
prompt = install_prompt or f"Select the desired {model_type.value.title()} models to install. Unchecked models will be purged from disk."
|
|
|
|
widgets.update(
|
|
label1 = self.add_widget_intelligent(
|
|
CenteredTitleText,
|
|
name=prompt,
|
|
editable=False,
|
|
labelColor="CAUTION",
|
|
)
|
|
)
|
|
|
|
widgets.update(
|
|
models_selected = self.add_widget_intelligent(
|
|
MultiSelectColumns,
|
|
columns=columns,
|
|
name=f"Install {model_type} Models",
|
|
values=model_labels,
|
|
value=[
|
|
model_list.index(x)
|
|
for x in model_list
|
|
if self.all_models[x].installed
|
|
],
|
|
max_height=len(model_list)//columns + 1,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
),
|
|
models = model_list,
|
|
)
|
|
|
|
self.nextrely += 1
|
|
widgets.update(
|
|
download_ids = self.add_widget_intelligent(
|
|
TextBox,
|
|
name = "Additional URLs, or HuggingFace repo_ids to install (Space separated. Use shift-control-V to paste):",
|
|
max_height=4,
|
|
scroll_exit=True,
|
|
editable=True,
|
|
)
|
|
)
|
|
return widgets
|
|
|
|
### Tab for arbitrary diffusers widgets ###
|
|
def add_pipeline_widgets(self,
|
|
model_type: ModelType=ModelType.Main,
|
|
window_width: int=120,
|
|
**kwargs,
|
|
)->dict[str,npyscreen.widget]:
|
|
'''Similar to add_model_widgets() but adds some additional widgets at the bottom
|
|
to support the autoload directory'''
|
|
widgets = self.add_model_widgets(
|
|
model_type = model_type,
|
|
window_width = window_width,
|
|
install_prompt=f"Additional {model_type.value.title()} models already installed.",
|
|
**kwargs,
|
|
)
|
|
|
|
label = "Directory to scan for models to automatically import (<tab> autocompletes):"
|
|
self.nextrely += 1
|
|
widgets.update(
|
|
autoload_directory = self.add_widget_intelligent(
|
|
FileBox,
|
|
max_height=3,
|
|
name=label,
|
|
value=str(config.root_path / config.autoimport_dir) if config.autoimport_dir else None,
|
|
select_dir=True,
|
|
must_exist=True,
|
|
use_two_lines=False,
|
|
labelColor="DANGER",
|
|
begin_entry_at=len(label)+1,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
widgets.update(
|
|
autoscan_on_startup = self.add_widget_intelligent(
|
|
npyscreen.Checkbox,
|
|
name="Scan and import from this directory each time InvokeAI starts",
|
|
value=config.autoimport_dir is not None,
|
|
relx=4,
|
|
scroll_exit=True,
|
|
)
|
|
)
|
|
return widgets
|
|
|
|
def resize(self):
|
|
super().resize()
|
|
if (s := self.starter_pipelines.get("models_selected")):
|
|
keys = [x for x in self.all_models.keys() if x in self.starter_models]
|
|
s.values = [self.model_labels[x] for x in keys]
|
|
|
|
def _toggle_tables(self, value=None):
|
|
selected_tab = value[0]
|
|
widgets = [
|
|
self.starter_pipelines,
|
|
self.pipeline_models,
|
|
self.controlnet_models,
|
|
self.lora_models,
|
|
self.ti_models,
|
|
]
|
|
|
|
for group in widgets:
|
|
for k,v in group.items():
|
|
try:
|
|
v.hidden = True
|
|
v.editable = False
|
|
except:
|
|
pass
|
|
for k,v in widgets[selected_tab].items():
|
|
try:
|
|
v.hidden = False
|
|
if not isinstance(v,(npyscreen.FixedText, npyscreen.TitleFixedText, CenteredTitleText)):
|
|
v.editable = True
|
|
except:
|
|
pass
|
|
self.__class__.current_tab = selected_tab # for persistence
|
|
self.display()
|
|
|
|
def _get_model_labels(self) -> dict[str,str]:
|
|
window_width, window_height = get_terminal_size()
|
|
checkbox_width = 4
|
|
spacing_width = 2
|
|
|
|
models = self.all_models
|
|
label_width = max([len(models[x].name) for x in models])
|
|
description_width = window_width - label_width - checkbox_width - spacing_width
|
|
|
|
result = dict()
|
|
for x in models.keys():
|
|
description = models[x].description
|
|
description = description[0 : description_width - 3] + "..." \
|
|
if description and len(description) > description_width \
|
|
else description if description else ''
|
|
result[x] = f"%-{label_width}s %s" % (models[x].name, description)
|
|
return result
|
|
|
|
def _get_columns(self) -> int:
|
|
window_width, window_height = get_terminal_size()
|
|
cols = (
|
|
4
|
|
if window_width > 240
|
|
else 3
|
|
if window_width > 160
|
|
else 2
|
|
if window_width > 80
|
|
else 1
|
|
)
|
|
return min(cols, len(self.installed_models))
|
|
|
|
def on_execute(self):
|
|
self.monitor.entry_widget.buffer(['Processing...'],scroll_end=True)
|
|
self.marshall_arguments()
|
|
app = self.parentApp
|
|
self.ok_button.hidden = True
|
|
self.display()
|
|
|
|
# for communication with the subprocess
|
|
parent_conn, child_conn = Pipe()
|
|
p = Process(
|
|
target = process_and_execute,
|
|
kwargs=dict(
|
|
opt = app.program_opts,
|
|
selections = app.install_selections,
|
|
conn_out = child_conn,
|
|
)
|
|
)
|
|
p.start()
|
|
child_conn.close()
|
|
self.subprocess_connection = parent_conn
|
|
self.subprocess = p
|
|
app.install_selections = InstallSelections()
|
|
# process_and_execute(app.opt, app.install_selections)
|
|
|
|
def on_back(self):
|
|
self.parentApp.switchFormPrevious()
|
|
self.editing = False
|
|
|
|
def on_cancel(self):
|
|
self.parentApp.setNextForm(None)
|
|
self.parentApp.user_cancelled = True
|
|
self.editing = False
|
|
|
|
def on_done(self):
|
|
self.marshall_arguments()
|
|
self.parentApp.setNextForm(None)
|
|
self.parentApp.user_cancelled = False
|
|
self.editing = False
|
|
|
|
########## This routine monitors the child process that is performing model installation and removal #####
|
|
def while_waiting(self):
|
|
'''Called during idle periods. Main task is to update the Log Messages box with messages
|
|
from the child process that does the actual installation/removal'''
|
|
c = self.subprocess_connection
|
|
if not c:
|
|
return
|
|
|
|
monitor_widget = self.monitor.entry_widget
|
|
while c.poll():
|
|
try:
|
|
data = c.recv_bytes().decode('utf-8')
|
|
data.strip('\n')
|
|
|
|
# processing child is requesting user input to select the
|
|
# right configuration file
|
|
if data.startswith('*need v2 config'):
|
|
_,model_path,*_ = data.split(":",2)
|
|
self._return_v2_config(model_path)
|
|
|
|
# processing child is done
|
|
elif data=='*done*':
|
|
self._close_subprocess_and_regenerate_form()
|
|
break
|
|
|
|
# update the log message box
|
|
else:
|
|
data=make_printable(data)
|
|
data=data.replace('[A','')
|
|
monitor_widget.buffer(
|
|
textwrap.wrap(data,
|
|
width=monitor_widget.width,
|
|
subsequent_indent=' ',
|
|
),
|
|
scroll_end=True
|
|
)
|
|
self.display()
|
|
except (EOFError,OSError):
|
|
self.subprocess_connection = None
|
|
|
|
def _return_v2_config(self,model_path: str):
|
|
c = self.subprocess_connection
|
|
model_name = Path(model_path).name
|
|
message = select_stable_diffusion_config_file(model_name=model_name)
|
|
c.send_bytes(message.encode('utf-8'))
|
|
|
|
def _close_subprocess_and_regenerate_form(self):
|
|
app = self.parentApp
|
|
self.subprocess_connection.close()
|
|
self.subprocess_connection = None
|
|
self.monitor.entry_widget.buffer(['** Action Complete **'])
|
|
self.display()
|
|
|
|
# rebuild the form, saving and restoring some of the fields that need to be preserved.
|
|
saved_messages = self.monitor.entry_widget.values
|
|
autoload_dir = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
|
autoscan = self.pipeline_models['autoscan_on_startup'].value
|
|
|
|
app.main_form = app.addForm(
|
|
"MAIN", addModelsForm, name="Install Stable Diffusion Models", multipage=self.multipage,
|
|
)
|
|
app.switchForm("MAIN")
|
|
|
|
app.main_form.monitor.entry_widget.values = saved_messages
|
|
app.main_form.monitor.entry_widget.buffer([''],scroll_end=True)
|
|
app.main_form.pipeline_models['autoload_directory'].value = autoload_dir
|
|
app.main_form.pipeline_models['autoscan_on_startup'].value = autoscan
|
|
|
|
def marshall_arguments(self):
|
|
"""
|
|
Assemble arguments and store as attributes of the application:
|
|
.starter_models: dict of model names to install from INITIAL_CONFIGURE.yaml
|
|
True => Install
|
|
False => Remove
|
|
.scan_directory: Path to a directory of models to scan and import
|
|
.autoscan_on_startup: True if invokeai should scan and import at startup time
|
|
.import_model_paths: list of URLs, repo_ids and file paths to import
|
|
"""
|
|
selections = self.parentApp.install_selections
|
|
all_models = self.all_models
|
|
|
|
# Defined models (in INITIAL_CONFIG.yaml or models.yaml) to add/remove
|
|
ui_sections = [self.starter_pipelines, self.pipeline_models,
|
|
self.controlnet_models, self.lora_models, self.ti_models]
|
|
for section in ui_sections:
|
|
if not 'models_selected' in section:
|
|
continue
|
|
selected = set([section['models'][x] for x in section['models_selected'].value])
|
|
models_to_install = [x for x in selected if not self.all_models[x].installed]
|
|
models_to_remove = [x for x in section['models'] if x not in selected and self.all_models[x].installed]
|
|
selections.remove_models.extend(models_to_remove)
|
|
selections.install_models.extend(all_models[x].path or all_models[x].repo_id \
|
|
for x in models_to_install if all_models[x].path or all_models[x].repo_id)
|
|
|
|
# models located in the 'download_ids" section
|
|
for section in ui_sections:
|
|
if downloads := section.get('download_ids'):
|
|
selections.install_models.extend(downloads.value.split())
|
|
|
|
# load directory and whether to scan on startup
|
|
if self.parentApp.autoload_pending:
|
|
selections.scan_directory = str(config.root_path / self.pipeline_models['autoload_directory'].value)
|
|
self.parentApp.autoload_pending = False
|
|
selections.autoscan_on_startup = self.pipeline_models['autoscan_on_startup'].value
|
|
|
|
class AddModelApplication(npyscreen.NPSAppManaged):
|
|
def __init__(self,opt):
|
|
super().__init__()
|
|
self.program_opts = opt
|
|
self.user_cancelled = False
|
|
self.autoload_pending = True
|
|
self.install_selections = InstallSelections()
|
|
|
|
def onStart(self):
|
|
npyscreen.setTheme(npyscreen.Themes.DefaultTheme)
|
|
self.main_form = self.addForm(
|
|
"MAIN", addModelsForm, name="Install Stable Diffusion Models", cycle_widgets=True,
|
|
)
|
|
|
|
class StderrToMessage():
|
|
def __init__(self, connection: Connection):
|
|
self.connection = connection
|
|
|
|
def write(self, data:str):
|
|
self.connection.send_bytes(data.encode('utf-8'))
|
|
|
|
def flush(self):
|
|
pass
|
|
|
|
# --------------------------------------------------------
|
|
def ask_user_for_prediction_type(model_path: Path,
|
|
tui_conn: Connection=None
|
|
)->Path:
|
|
if tui_conn:
|
|
logger.debug('Waiting for user response...')
|
|
return _ask_user_for_pt_tui(model_path, tui_conn)
|
|
else:
|
|
return _ask_user_for_pt_cmdline(model_path)
|
|
|
|
def _ask_user_for_pt_cmdline(model_path):
|
|
choices = [SchedulerPredictionType.Epsilon, SchedulerPredictionType.VPrediction, None]
|
|
print(
|
|
f"""
|
|
Please select the type of the V2 checkpoint named {model_path.name}:
|
|
[1] A Stable Diffusion v2.x base model (512 pixels; there should be no 'parameterization:' line in its yaml file)
|
|
[2] A Stable Diffusion v2.x v-predictive model (768 pixels; look for a 'parameterization: "v"' line in its yaml file)
|
|
[3] Skip this model and come back later.
|
|
"""
|
|
)
|
|
choice = None
|
|
ok = False
|
|
while not ok:
|
|
try:
|
|
choice = input('select> ').strip()
|
|
choice = choices[int(choice)-1]
|
|
ok = True
|
|
except (ValueError, IndexError):
|
|
print(f'{choice} is not a valid choice')
|
|
except EOFError:
|
|
return
|
|
return choice
|
|
|
|
def _ask_user_for_pt_tui(model_path: Path, tui_conn: Connection)->Path:
|
|
try:
|
|
tui_conn.send_bytes(f'*need v2 config for:{model_path}'.encode('utf-8'))
|
|
# note that we don't do any status checking here
|
|
response = tui_conn.recv_bytes().decode('utf-8')
|
|
if response is None:
|
|
return None
|
|
elif response == 'epsilon':
|
|
return SchedulerPredictionType.epsilon
|
|
elif response == 'v':
|
|
return SchedulerPredictionType.VPrediction
|
|
elif response == 'abort':
|
|
logger.info('Conversion aborted')
|
|
return None
|
|
else:
|
|
return response
|
|
except:
|
|
return None
|
|
|
|
# --------------------------------------------------------
|
|
def process_and_execute(opt: Namespace,
|
|
selections: InstallSelections,
|
|
conn_out: Connection=None,
|
|
):
|
|
# set up so that stderr is sent to conn_out
|
|
if conn_out:
|
|
translator = StderrToMessage(conn_out)
|
|
sys.stderr = translator
|
|
sys.stdout = translator
|
|
logger = InvokeAILogger.getLogger()
|
|
logger.handlers.clear()
|
|
logger.addHandler(logging.StreamHandler(translator))
|
|
|
|
installer = ModelInstall(config, prediction_type_helper=lambda x: ask_user_for_prediction_type(x,conn_out))
|
|
installer.install(selections)
|
|
|
|
if conn_out:
|
|
conn_out.send_bytes('*done*'.encode('utf-8'))
|
|
conn_out.close()
|
|
|
|
def do_listings(opt)->bool:
|
|
"""List installed models of various sorts, and return
|
|
True if any were requested."""
|
|
model_manager = ModelManager(config.model_conf_path)
|
|
if opt.list_models == 'diffusers':
|
|
print("Diffuser models:")
|
|
model_manager.print_models()
|
|
elif opt.list_models == 'controlnets':
|
|
print("Installed Controlnet Models:")
|
|
cnm = model_manager.list_controlnet_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
elif opt.list_models == 'loras':
|
|
print("Installed LoRA/LyCORIS Models:")
|
|
cnm = model_manager.list_lora_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
elif opt.list_models == 'tis':
|
|
print("Installed Textual Inversion Embeddings:")
|
|
cnm = model_manager.list_ti_models()
|
|
print(textwrap.indent("\n".join([x for x in cnm if cnm[x]]),prefix=' '))
|
|
else:
|
|
return False
|
|
return True
|
|
|
|
# --------------------------------------------------------
|
|
def select_and_download_models(opt: Namespace):
|
|
precision = (
|
|
"float32"
|
|
if opt.full_precision
|
|
else choose_precision(torch.device(choose_torch_device()))
|
|
)
|
|
config.precision = precision
|
|
helper = lambda x: ask_user_for_prediction_type(x)
|
|
# if do_listings(opt):
|
|
# pass
|
|
|
|
installer = ModelInstall(config, prediction_type_helper=helper)
|
|
if opt.add or opt.delete:
|
|
selections = InstallSelections(
|
|
install_models = opt.add or [],
|
|
remove_models = opt.delete or []
|
|
)
|
|
installer.install(selections)
|
|
elif opt.default_only:
|
|
selections = InstallSelections(
|
|
install_models = installer.default_model()
|
|
)
|
|
installer.install(selections)
|
|
elif opt.yes_to_all:
|
|
selections = InstallSelections(
|
|
install_models = installer.recommended_models()
|
|
)
|
|
installer.install(selections)
|
|
|
|
# this is where the TUI is called
|
|
else:
|
|
# needed because the torch library is loaded, even though we don't use it
|
|
# currently commented out because it has started generating errors (?)
|
|
# torch.multiprocessing.set_start_method("spawn")
|
|
|
|
# the third argument is needed in the Windows 11 environment in
|
|
# order to launch and resize a console window running this program
|
|
set_min_terminal_size(MIN_COLS, MIN_LINES,'invokeai-model-install')
|
|
installApp = AddModelApplication(opt)
|
|
try:
|
|
installApp.run()
|
|
except KeyboardInterrupt as e:
|
|
if hasattr(installApp,'main_form'):
|
|
if installApp.main_form.subprocess \
|
|
and installApp.main_form.subprocess.is_alive():
|
|
logger.info('Terminating subprocesses')
|
|
installApp.main_form.subprocess.terminate()
|
|
installApp.main_form.subprocess = None
|
|
raise e
|
|
process_and_execute(opt, installApp.install_selections)
|
|
|
|
# -------------------------------------
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="InvokeAI model downloader")
|
|
parser.add_argument(
|
|
"--add",
|
|
nargs="*",
|
|
help="List of URLs, local paths or repo_ids of models to install",
|
|
)
|
|
parser.add_argument(
|
|
"--delete",
|
|
nargs="*",
|
|
help="List of names of models to idelete",
|
|
)
|
|
parser.add_argument(
|
|
"--full-precision",
|
|
dest="full_precision",
|
|
action=argparse.BooleanOptionalAction,
|
|
type=bool,
|
|
default=False,
|
|
help="use 32-bit weights instead of faster 16-bit weights",
|
|
)
|
|
parser.add_argument(
|
|
"--yes",
|
|
"-y",
|
|
dest="yes_to_all",
|
|
action="store_true",
|
|
help='answer "yes" to all prompts',
|
|
)
|
|
parser.add_argument(
|
|
"--default_only",
|
|
action="store_true",
|
|
help="Only install the default model",
|
|
)
|
|
parser.add_argument(
|
|
"--list-models",
|
|
choices=["diffusers","loras","controlnets","tis"],
|
|
help="list installed models",
|
|
)
|
|
parser.add_argument(
|
|
"--config_file",
|
|
"-c",
|
|
dest="config_file",
|
|
type=str,
|
|
default=None,
|
|
help="path to configuration file to create",
|
|
)
|
|
parser.add_argument(
|
|
"--root_dir",
|
|
dest="root",
|
|
type=str,
|
|
default=None,
|
|
help="path to root of install directory",
|
|
)
|
|
opt = parser.parse_args()
|
|
|
|
invoke_args = []
|
|
if opt.root:
|
|
invoke_args.extend(['--root',opt.root])
|
|
if opt.full_precision:
|
|
invoke_args.extend(['--precision','float32'])
|
|
config.parse_args(invoke_args)
|
|
logger = InvokeAILogger().getLogger(config=config)
|
|
|
|
if not (config.root_dir / config.conf_path.parent).exists():
|
|
logger.info(
|
|
"Your InvokeAI root directory is not set up. Calling invokeai-configure."
|
|
)
|
|
from invokeai.frontend.install import invokeai_configure
|
|
|
|
invokeai_configure()
|
|
sys.exit(0)
|
|
|
|
try:
|
|
select_and_download_models(opt)
|
|
except AssertionError as e:
|
|
logger.error(e)
|
|
sys.exit(-1)
|
|
except KeyboardInterrupt:
|
|
curses.nocbreak()
|
|
curses.echo()
|
|
curses.endwin()
|
|
logger.info("Goodbye! Come back soon.")
|
|
except widget.NotEnoughSpaceForWidget as e:
|
|
if str(e).startswith("Height of 1 allocated"):
|
|
logger.error(
|
|
"Insufficient vertical space for the interface. Please make your window taller and try again"
|
|
)
|
|
elif str(e).startswith("addwstr"):
|
|
logger.error(
|
|
"Insufficient horizontal space for the interface. Please make your window wider and try again."
|
|
)
|
|
except Exception as e:
|
|
print(f'An exception has occurred: {str(e)} Details:')
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
input('Press any key to continue...')
|
|
|
|
|
|
# -------------------------------------
|
|
if __name__ == "__main__":
|
|
main()
|