InvokeAI/invokeai/app/invocations/facetools.py
psychedelicious a514c9e28b feat(backend): update workflows handling
Update workflows handling for Workflow Library.

**Updated Workflow Storage**

"Embedded Workflows" are workflows associated with images, and are now only stored in the image files. "Library Workflows" are not associated with images, and are stored only in DB.

This works out nicely. We have always saved workflows to files, but recently began saving them to the DB in addition to in image files. When that happened, we stopped reading workflows from files, so all the workflows that only existed in images were inaccessible. With this change, access to those workflows is restored, and no workflows are lost.

**Updated Workflow Handling in Nodes**

Prior to this change, workflows were embedded in images by passing the whole workflow JSON to a special workflow field on a node. In the node's `invoke()` function, the node was able to access this workflow and save it with the image. This (inaccurately) models workflows as a property of an image and is rather awkward technically.

A workflow is now a property of a batch/session queue item. It is available in the InvocationContext and therefore available to all nodes during `invoke()`.

**Database Migrations**

Added a `SQLiteMigrator` class to handle database migrations. Migrations were needed to accomodate the DB-related changes in this PR. See the code for details.

The `images`, `workflows` and `session_queue` tables required migrations for this PR, and are using the new migrator. Other tables/services are still creating tables themselves. A followup PR will adapt them to use the migrator.

**Other/Support Changes**

- Add a `has_workflow` column to `images` table to indicate that the image has an embedded workflow.
- Add handling for retrieving the workflow from an image in python. The image file must be fetched, the workflow extracted, and then sent to client, avoiding needing the browser to parse the image file. With the `has_workflow` column, the UI knows if there is a workflow to be fetched, and only fetches when the user requests to load the workflow.
- Add route to get the workflow from an image
- Add CRUD service/routes for the library workflows
- `workflow_images` table and services removed (no longer needed now that embedded workflows are not in the DB)
2023-11-29 12:42:10 +11:00

726 lines
27 KiB
Python

import math
import re
from pathlib import Path
from typing import Optional, TypedDict
import cv2
import numpy as np
from mediapipe.python.solutions.face_mesh import FaceMesh # type: ignore[import]
from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps
from PIL.Image import Image as ImageType
from pydantic import field_validator
import invokeai.assets.fonts as font_assets
from invokeai.app.invocations.baseinvocation import (
BaseInvocation,
InputField,
InvocationContext,
OutputField,
WithMetadata,
invocation,
invocation_output,
)
from invokeai.app.invocations.primitives import ImageField, ImageOutput
from invokeai.app.services.image_records.image_records_common import ImageCategory, ResourceOrigin
@invocation_output("face_mask_output")
class FaceMaskOutput(ImageOutput):
"""Base class for FaceMask output"""
mask: ImageField = OutputField(description="The output mask")
@invocation_output("face_off_output")
class FaceOffOutput(ImageOutput):
"""Base class for FaceOff Output"""
mask: ImageField = OutputField(description="The output mask")
x: int = OutputField(description="The x coordinate of the bounding box's left side")
y: int = OutputField(description="The y coordinate of the bounding box's top side")
class FaceResultData(TypedDict):
image: ImageType
mask: ImageType
x_center: float
y_center: float
mesh_width: int
mesh_height: int
chunk_x_offset: int
chunk_y_offset: int
class FaceResultDataWithId(FaceResultData):
face_id: int
class ExtractFaceData(TypedDict):
bounded_image: ImageType
bounded_mask: ImageType
x_min: int
y_min: int
x_max: int
y_max: int
class FaceMaskResult(TypedDict):
image: ImageType
mask: ImageType
def create_white_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=255)
def create_black_image(w: int, h: int) -> ImageType:
return Image.new("L", (w, h), color=0)
FONT_SIZE = 32
FONT_STROKE_WIDTH = 4
def coalesce_faces(face1: FaceResultData, face2: FaceResultData) -> FaceResultData:
face1_x_offset = face1["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face2_x_offset = face2["chunk_x_offset"] - min(face1["chunk_x_offset"], face2["chunk_x_offset"])
face1_y_offset = face1["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
face2_y_offset = face2["chunk_y_offset"] - min(face1["chunk_y_offset"], face2["chunk_y_offset"])
new_im_width = (
max(face1["image"].width, face2["image"].width)
+ max(face1["chunk_x_offset"], face2["chunk_x_offset"])
- min(face1["chunk_x_offset"], face2["chunk_x_offset"])
)
new_im_height = (
max(face1["image"].height, face2["image"].height)
+ max(face1["chunk_y_offset"], face2["chunk_y_offset"])
- min(face1["chunk_y_offset"], face2["chunk_y_offset"])
)
pil_image = Image.new(mode=face1["image"].mode, size=(new_im_width, new_im_height))
pil_image.paste(face1["image"], (face1_x_offset, face1_y_offset))
pil_image.paste(face2["image"], (face2_x_offset, face2_y_offset))
# Mask images are always from the origin
new_mask_im_width = max(face1["mask"].width, face2["mask"].width)
new_mask_im_height = max(face1["mask"].height, face2["mask"].height)
mask_pil = create_white_image(new_mask_im_width, new_mask_im_height)
black_image = create_black_image(face1["mask"].width, face1["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face1["mask"]))
black_image = create_black_image(face2["mask"].width, face2["mask"].height)
mask_pil.paste(black_image, (0, 0), ImageOps.invert(face2["mask"]))
new_face = FaceResultData(
image=pil_image,
mask=mask_pil,
x_center=max(face1["x_center"], face2["x_center"]),
y_center=max(face1["y_center"], face2["y_center"]),
mesh_width=max(face1["mesh_width"], face2["mesh_width"]),
mesh_height=max(face1["mesh_height"], face2["mesh_height"]),
chunk_x_offset=max(face1["chunk_x_offset"], face2["chunk_x_offset"]),
chunk_y_offset=max(face2["chunk_y_offset"], face2["chunk_y_offset"]),
)
return new_face
def prepare_faces_list(
face_result_list: list[FaceResultData],
) -> list[FaceResultDataWithId]:
"""Deduplicates a list of faces, adding IDs to them."""
deduped_faces: list[FaceResultData] = []
if len(face_result_list) == 0:
return []
for candidate in face_result_list:
should_add = True
candidate_x_center = candidate["x_center"]
candidate_y_center = candidate["y_center"]
for idx, face in enumerate(deduped_faces):
face_center_x = face["x_center"]
face_center_y = face["y_center"]
face_radius_w = face["mesh_width"] / 2
face_radius_h = face["mesh_height"] / 2
# Determine if the center of the candidate_face is inside the ellipse of the added face
# p < 1 -> Inside
# p = 1 -> Exactly on the ellipse
# p > 1 -> Outside
p = (math.pow((candidate_x_center - face_center_x), 2) / math.pow(face_radius_w, 2)) + (
math.pow((candidate_y_center - face_center_y), 2) / math.pow(face_radius_h, 2)
)
if p < 1: # Inside of the already-added face's radius
deduped_faces[idx] = coalesce_faces(face, candidate)
should_add = False
break
if should_add is True:
deduped_faces.append(candidate)
sorted_faces = sorted(deduped_faces, key=lambda x: x["y_center"])
sorted_faces = sorted(sorted_faces, key=lambda x: x["x_center"])
# add face_id for reference
sorted_faces_with_ids: list[FaceResultDataWithId] = []
face_id_counter = 0
for face in sorted_faces:
sorted_faces_with_ids.append(
FaceResultDataWithId(
**face,
face_id=face_id_counter,
)
)
face_id_counter += 1
return sorted_faces_with_ids
def generate_face_box_mask(
context: InvocationContext,
minimum_confidence: float,
x_offset: float,
y_offset: float,
pil_image: ImageType,
chunk_x_offset: int = 0,
chunk_y_offset: int = 0,
draw_mesh: bool = True,
) -> list[FaceResultData]:
result = []
mask_pil = None
# Convert the PIL image to a NumPy array.
np_image = np.array(pil_image, dtype=np.uint8)
# Check if the input image has four channels (RGBA).
if np_image.shape[2] == 4:
# Convert RGBA to RGB by removing the alpha channel.
np_image = np_image[:, :, :3]
# Create a FaceMesh object for face landmark detection and mesh generation.
face_mesh = FaceMesh(
max_num_faces=999,
min_detection_confidence=minimum_confidence,
min_tracking_confidence=minimum_confidence,
)
# Detect the face landmarks and mesh in the input image.
results = face_mesh.process(np_image)
# Check if any face is detected.
if results.multi_face_landmarks: # type: ignore # this are via protobuf and not typed
# Search for the face_id in the detected faces.
for _face_id, face_landmarks in enumerate(results.multi_face_landmarks): # type: ignore #this are via protobuf and not typed
# Get the bounding box of the face mesh.
x_coordinates = [landmark.x for landmark in face_landmarks.landmark]
y_coordinates = [landmark.y for landmark in face_landmarks.landmark]
x_min, x_max = min(x_coordinates), max(x_coordinates)
y_min, y_max = min(y_coordinates), max(y_coordinates)
# Calculate the width and height of the face mesh.
mesh_width = int((x_max - x_min) * np_image.shape[1])
mesh_height = int((y_max - y_min) * np_image.shape[0])
# Get the center of the face.
x_center = np.mean([landmark.x * np_image.shape[1] for landmark in face_landmarks.landmark])
y_center = np.mean([landmark.y * np_image.shape[0] for landmark in face_landmarks.landmark])
face_landmark_points = np.array(
[
[landmark.x * np_image.shape[1], landmark.y * np_image.shape[0]]
for landmark in face_landmarks.landmark
]
)
# Apply the scaling offsets to the face landmark points with a multiplier.
scale_multiplier = 0.2
x_center = np.mean(face_landmark_points[:, 0])
y_center = np.mean(face_landmark_points[:, 1])
if draw_mesh:
x_scaled = face_landmark_points[:, 0] + scale_multiplier * x_offset * (
face_landmark_points[:, 0] - x_center
)
y_scaled = face_landmark_points[:, 1] + scale_multiplier * y_offset * (
face_landmark_points[:, 1] - y_center
)
convex_hull = cv2.convexHull(np.column_stack((x_scaled, y_scaled)).astype(np.int32))
# Generate a binary face mask using the face mesh.
mask_image = np.ones(np_image.shape[:2], dtype=np.uint8) * 255
cv2.fillConvexPoly(mask_image, convex_hull, 0)
# Convert the binary mask image to a PIL Image.
init_mask_pil = Image.fromarray(mask_image, mode="L")
w, h = init_mask_pil.size
mask_pil = create_white_image(w + chunk_x_offset, h + chunk_y_offset)
mask_pil.paste(init_mask_pil, (chunk_x_offset, chunk_y_offset))
x_center = float(x_center)
y_center = float(y_center)
face = FaceResultData(
image=pil_image,
mask=mask_pil or create_white_image(*pil_image.size),
x_center=x_center + chunk_x_offset,
y_center=y_center + chunk_y_offset,
mesh_width=mesh_width,
mesh_height=mesh_height,
chunk_x_offset=chunk_x_offset,
chunk_y_offset=chunk_y_offset,
)
result.append(face)
return result
def extract_face(
context: InvocationContext,
image: ImageType,
face: FaceResultData,
padding: int,
) -> ExtractFaceData:
mask = face["mask"]
center_x = face["x_center"]
center_y = face["y_center"]
mesh_width = face["mesh_width"]
mesh_height = face["mesh_height"]
# Determine the minimum size of the square crop
min_size = min(mask.width, mask.height)
# Calculate the crop boundaries for the output image and mask.
mesh_width += 128 + padding # add pixels to account for mask variance
mesh_height += 128 + padding # add pixels to account for mask variance
crop_size = min(
max(mesh_width, mesh_height, 128), min_size
) # Choose the smaller of the two (given value or face mask size)
if crop_size > 128:
crop_size = (crop_size + 7) // 8 * 8 # Ensure crop side is multiple of 8
# Calculate the actual crop boundaries within the bounds of the original image.
x_min = int(center_x - crop_size / 2)
y_min = int(center_y - crop_size / 2)
x_max = int(center_x + crop_size / 2)
y_max = int(center_y + crop_size / 2)
# Adjust the crop boundaries to stay within the original image's dimensions
if x_min < 0:
context.services.logger.warning("FaceTools --> -X-axis padding reached image edge.")
x_max -= x_min
x_min = 0
elif x_max > mask.width:
context.services.logger.warning("FaceTools --> +X-axis padding reached image edge.")
x_min -= x_max - mask.width
x_max = mask.width
if y_min < 0:
context.services.logger.warning("FaceTools --> +Y-axis padding reached image edge.")
y_max -= y_min
y_min = 0
elif y_max > mask.height:
context.services.logger.warning("FaceTools --> -Y-axis padding reached image edge.")
y_min -= y_max - mask.height
y_max = mask.height
# Ensure the crop is square and adjust the boundaries if needed
if x_max - x_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting x-axis padding to constrain bounding box to a square.")
diff = crop_size - (x_max - x_min)
x_min -= diff // 2
x_max += diff - diff // 2
if y_max - y_min != crop_size:
context.services.logger.warning("FaceTools --> Limiting y-axis padding to constrain bounding box to a square.")
diff = crop_size - (y_max - y_min)
y_min -= diff // 2
y_max += diff - diff // 2
context.services.logger.info(f"FaceTools --> Calculated bounding box (8 multiple): {crop_size}")
# Crop the output image to the specified size with the center of the face mesh as the center.
mask = mask.crop((x_min, y_min, x_max, y_max))
bounded_image = image.crop((x_min, y_min, x_max, y_max))
# blur mask edge by small radius
mask = mask.filter(ImageFilter.GaussianBlur(radius=2))
return ExtractFaceData(
bounded_image=bounded_image,
bounded_mask=mask,
x_min=x_min,
y_min=y_min,
x_max=x_max,
y_max=y_max,
)
def get_faces_list(
context: InvocationContext,
image: ImageType,
should_chunk: bool,
minimum_confidence: float,
x_offset: float,
y_offset: float,
draw_mesh: bool = True,
) -> list[FaceResultDataWithId]:
result = []
# Generate the face box mask and get the center of the face.
if not should_chunk:
context.services.logger.info("FaceTools --> Attempting full image face detection.")
result = generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image,
chunk_x_offset=0,
chunk_y_offset=0,
draw_mesh=draw_mesh,
)
if should_chunk or len(result) == 0:
context.services.logger.info("FaceTools --> Chunking image (chunk toggled on, or no face found in full image).")
width, height = image.size
image_chunks = []
x_offsets = []
y_offsets = []
result = []
# If width == height, there's nothing more we can do... otherwise...
if width > height:
# Landscape - slice the image horizontally
fx = 0.0
steps = int(width * 2 / height) + 1
increment = (width - height) / (steps - 1)
while fx <= (width - height):
x = int(fx)
image_chunks.append(image.crop((x, 0, x + height, height)))
x_offsets.append(x)
y_offsets.append(0)
fx += increment
context.services.logger.info(f"FaceTools --> Chunk starting at x = {x}")
elif height > width:
# Portrait - slice the image vertically
fy = 0.0
steps = int(height * 2 / width) + 1
increment = (height - width) / (steps - 1)
while fy <= (height - width):
y = int(fy)
image_chunks.append(image.crop((0, y, width, y + width)))
x_offsets.append(0)
y_offsets.append(y)
fy += increment
context.services.logger.info(f"FaceTools --> Chunk starting at y = {y}")
for idx in range(len(image_chunks)):
context.services.logger.info(f"FaceTools --> Evaluating faces in chunk {idx}")
result = result + generate_face_box_mask(
context=context,
minimum_confidence=minimum_confidence,
x_offset=x_offset,
y_offset=y_offset,
pil_image=image_chunks[idx],
chunk_x_offset=x_offsets[idx],
chunk_y_offset=y_offsets[idx],
draw_mesh=draw_mesh,
)
if len(result) == 0:
# Give up
context.services.logger.warning(
"FaceTools --> No face detected in chunked input image. Passing through original image."
)
all_faces = prepare_faces_list(result)
return all_faces
@invocation("face_off", title="FaceOff", tags=["image", "faceoff", "face", "mask"], category="image", version="1.2.0")
class FaceOffInvocation(BaseInvocation, WithMetadata):
"""Bound, extract, and mask a face from an image using MediaPipe detection"""
image: ImageField = InputField(description="Image for face detection")
face_id: int = InputField(
default=0,
ge=0,
description="The face ID to process, numbered from 0. Multiple faces not supported. Find a face's ID with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="X-axis offset of the mask")
y_offset: float = InputField(default=0.0, description="Y-axis offset of the mask")
padding: int = InputField(default=0, description="All-axis padding around the mask in pixels")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceoff(self, context: InvocationContext, image: ImageType) -> Optional[ExtractFaceData]:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
if len(all_faces) == 0:
context.services.logger.warning("FaceOff --> No faces detected. Passing through original image.")
return None
if self.face_id > len(all_faces) - 1:
context.services.logger.warning(
f"FaceOff --> Face ID {self.face_id} is outside of the number of faces detected ({len(all_faces)}). Passing through original image."
)
return None
face_data = extract_face(context=context, image=image, face=all_faces[self.face_id], padding=self.padding)
# Convert the input image to RGBA mode to ensure it has an alpha channel.
face_data["bounded_image"] = face_data["bounded_image"].convert("RGBA")
return face_data
def invoke(self, context: InvocationContext) -> FaceOffOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.faceoff(context=context, image=image)
if result is None:
result_image = image
result_mask = create_white_image(*image.size)
x = 0
y = 0
else:
result_image = result["bounded_image"]
result_mask = result["bounded_mask"]
x = result["x_min"]
y = result["y_min"]
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
mask_dto = context.services.images.create(
image=result_mask,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceOffOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
x=x,
y=y,
)
return output
@invocation("face_mask_detection", title="FaceMask", tags=["image", "face", "mask"], category="image", version="1.2.0")
class FaceMaskInvocation(BaseInvocation, WithMetadata):
"""Face mask creation using mediapipe face detection"""
image: ImageField = InputField(description="Image to face detect")
face_ids: str = InputField(
default="",
description="Comma-separated list of face ids to mask eg '0,2,7'. Numbered from 0. Leave empty to mask all. Find face IDs with FaceIdentifier node.",
)
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
x_offset: float = InputField(default=0.0, description="Offset for the X-axis of the face mask")
y_offset: float = InputField(default=0.0, description="Offset for the Y-axis of the face mask")
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
invert_mask: bool = InputField(default=False, description="Toggle to invert the mask")
@field_validator("face_ids")
def validate_comma_separated_ints(cls, v) -> str:
comma_separated_ints_regex = re.compile(r"^\d*(,\d+)*$")
if comma_separated_ints_regex.match(v) is None:
raise ValueError('Face IDs must be a comma-separated list of integers (e.g. "1,2,3")')
return v
def facemask(self, context: InvocationContext, image: ImageType) -> FaceMaskResult:
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=self.x_offset,
y_offset=self.y_offset,
draw_mesh=True,
)
mask_pil = create_white_image(*image.size)
id_range = list(range(0, len(all_faces)))
ids_to_extract = id_range
if self.face_ids != "":
parsed_face_ids = [int(id) for id in self.face_ids.split(",")]
# get requested face_ids that are in range
intersected_face_ids = set(parsed_face_ids) & set(id_range)
if len(intersected_face_ids) == 0:
id_range_str = ",".join([str(id) for id in id_range])
context.services.logger.warning(
f"Face IDs must be in range of detected faces - requested {self.face_ids}, detected {id_range_str}. Passing through original image."
)
return FaceMaskResult(
image=image, # original image
mask=mask_pil, # white mask
)
ids_to_extract = list(intersected_face_ids)
for face_id in ids_to_extract:
face_data = extract_face(context=context, image=image, face=all_faces[face_id], padding=0)
face_mask_pil = face_data["bounded_mask"]
x_min = face_data["x_min"]
y_min = face_data["y_min"]
x_max = face_data["x_max"]
y_max = face_data["y_max"]
mask_pil.paste(
create_black_image(x_max - x_min, y_max - y_min),
box=(x_min, y_min),
mask=ImageOps.invert(face_mask_pil),
)
if self.invert_mask:
mask_pil = ImageOps.invert(mask_pil)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return FaceMaskResult(
image=image,
mask=mask_pil,
)
def invoke(self, context: InvocationContext) -> FaceMaskOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result = self.facemask(context=context, image=image)
image_dto = context.services.images.create(
image=result["image"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
mask_dto = context.services.images.create(
image=result["mask"],
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.MASK,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
)
output = FaceMaskOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
mask=ImageField(image_name=mask_dto.image_name),
)
return output
@invocation(
"face_identifier", title="FaceIdentifier", tags=["image", "face", "identifier"], category="image", version="1.2.0"
)
class FaceIdentifierInvocation(BaseInvocation, WithMetadata):
"""Outputs an image with detected face IDs printed on each face. For use with other FaceTools."""
image: ImageField = InputField(description="Image to face detect")
minimum_confidence: float = InputField(
default=0.5, description="Minimum confidence for face detection (lower if detection is failing)"
)
chunk: bool = InputField(
default=False,
description="Whether to bypass full image face detection and default to image chunking. Chunking will occur if no faces are found in the full image.",
)
def faceidentifier(self, context: InvocationContext, image: ImageType) -> ImageType:
image = image.copy()
all_faces = get_faces_list(
context=context,
image=image,
should_chunk=self.chunk,
minimum_confidence=self.minimum_confidence,
x_offset=0,
y_offset=0,
draw_mesh=False,
)
# Note - font may be found either in the repo if running an editable install, or in the venv if running a package install
font_path = [x for x in [Path(y, "inter/Inter-Regular.ttf") for y in font_assets.__path__] if x.exists()]
font = ImageFont.truetype(font_path[0].as_posix(), FONT_SIZE)
# Paste face IDs on the output image
draw = ImageDraw.Draw(image)
for face in all_faces:
x_coord = face["x_center"]
y_coord = face["y_center"]
text = str(face["face_id"])
# get bbox of the text so we can center the id on the face
_, _, bbox_w, bbox_h = draw.textbbox(xy=(0, 0), text=text, font=font, stroke_width=FONT_STROKE_WIDTH)
x = x_coord - bbox_w / 2
y = y_coord - bbox_h / 2
draw.text(
xy=(x, y),
text=str(text),
fill=(255, 255, 255, 255),
font=font,
stroke_width=FONT_STROKE_WIDTH,
stroke_fill=(0, 0, 0, 255),
)
# Create an RGBA image with transparency
image = image.convert("RGBA")
return image
def invoke(self, context: InvocationContext) -> ImageOutput:
image = context.services.images.get_pil_image(self.image.image_name)
result_image = self.faceidentifier(context=context, image=image)
image_dto = context.services.images.create(
image=result_image,
image_origin=ResourceOrigin.INTERNAL,
image_category=ImageCategory.GENERAL,
node_id=self.id,
session_id=context.graph_execution_state_id,
is_intermediate=self.is_intermediate,
workflow=context.workflow,
)
return ImageOutput(
image=ImageField(image_name=image_dto.image_name),
width=image_dto.width,
height=image_dto.height,
)