InvokeAI/configs/models.yaml
Lincoln Stein 93cba3fba5
Kyle0654 inpaint improvement - with refactoring from PR #1221 (#1)
* Removed duplicate fix_func for MPS

* add support for loading VAE autoencoders

To add a VAE autoencoder to an existing model:

1. Download the appropriate autoencoder and put it into
   models/ldm/stable-diffusion

   Note that you MUST use a VAE that was written for the
   original CompViz Stable Diffusion codebase. For v1.4,
   that would be the file named vae-ft-mse-840000-ema-pruned.ckpt
   that you can download from https://huggingface.co/stabilityai/sd-vae-ft-mse-original

2. Edit config/models.yaml to contain the following stanza, modifying `weights`
   and `vae` as required to match the weights and vae model file names. There is
   no requirement to rename the VAE file.

~~~
stable-diffusion-1.4:
  weights: models/ldm/stable-diffusion-v1/sd-v1-4.ckpt
  description: Stable Diffusion v1.4
  config: configs/stable-diffusion/v1-inference.yaml
  vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
  width: 512
  height: 512
~~~

3. Alternatively from within the `invoke.py` CLI, you may use the command
   `!editmodel stable-diffusion-1.4` to bring up a simple editor that will
   allow you to add the path to the VAE.

4. If you are just installing InvokeAI for the first time, you can also
   use `!import_model models/ldm/stable-diffusion/sd-v1.4.ckpt` instead
   to create the configuration from scratch.

5. That's it!

* ported code refactor changes from PR #1221

- pass a PIL.Image to img2img and inpaint rather than tensor
- To support clipseg, inpaint needs to accept an "L" or "1" format
  mask. Made the appropriate change.

* minor fixes to inpaint code

1. If tensors are passed to inpaint as init_image and/or init_mask, then
   the post-generation image fixup code will be skipped.

2. Post-generation image fixup will work with either a black and white "L"
   or "RGB"  mask, or an "RGBA" mask.

Co-authored-by: wfng92 <43742196+wfng92@users.noreply.github.com>
2022-10-22 20:09:38 -07:00

23 lines
871 B
YAML

# This file describes the alternative machine learning models
# available to the dream script.
#
# To add a new model, follow the examples below. Each
# model requires a model config file, a weights file,
# and the width and height of the images it
# was trained on.
stable-diffusion-1.4:
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/model.ckpt
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
description: Stable Diffusion inference model version 1.4
width: 512
height: 512
stable-diffusion-1.5:
config: configs/stable-diffusion/v1-inference.yaml
weights: models/ldm/stable-diffusion-v1/v1-5-pruned-emaonly.ckpt
description: Stable Diffusion inference model version 1.5
width: 512
height: 512
vae: models/ldm/stable-diffusion-v1/vae-ft-mse-840000-ema-pruned.ckpt
default: true