Files
InvokeAI/invokeai/backend/model_manager/config.py
Lincoln Stein 93cef55964 blackify
2023-08-23 19:53:21 -04:00

270 lines
8.1 KiB
Python

# Copyright (c) 2023 Lincoln D. Stein and the InvokeAI Development Team
"""
Configuration definitions for image generation models.
Typical usage:
from invokeai.backend.model_manager import ModelConfigFactory
raw = dict(path='models/sd-1/main/foo.ckpt',
name='foo',
base_model='sd-1',
model_type='main',
config='configs/stable-diffusion/v1-inference.yaml',
model_variant='normal',
model_format='checkpoint'
)
config = ModelConfigFactory.make_config(raw)
print(config.name)
Validation errors will raise an InvalidModelConfigException error.
"""
from enum import Enum
from typing import Optional, Literal, List, Union, Type
from omegaconf.listconfig import ListConfig # to support the yaml backend
import pydantic
from pydantic import BaseModel, Field, Extra
from pydantic.error_wrappers import ValidationError
class InvalidModelConfigException(Exception):
"""Exception for when config parser doesn't recognized this combination of model type and format."""
class BaseModelType(str, Enum):
"""Base model type."""
StableDiffusion1 = "sd-1"
StableDiffusion2 = "sd-2"
StableDiffusionXL = "sdxl"
StableDiffusionXLRefiner = "sdxl-refiner"
# Kandinsky2_1 = "kandinsky-2.1"
class ModelType(str, Enum):
"""Model type."""
ONNX = "onnx"
Main = "main"
Vae = "vae"
Lora = "lora"
ControlNet = "controlnet" # used by model_probe
TextualInversion = "embedding"
class SubModelType(str, Enum):
"""Submodel type."""
UNet = "unet"
TextEncoder = "text_encoder"
TextEncoder2 = "text_encoder_2"
Tokenizer = "tokenizer"
Tokenizer2 = "tokenizer_2"
Vae = "vae"
VaeDecoder = "vae_decoder"
VaeEncoder = "vae_encoder"
Scheduler = "scheduler"
SafetyChecker = "safety_checker"
class ModelVariantType(str, Enum):
"""Variant type."""
Normal = "normal"
Inpaint = "inpaint"
Depth = "depth"
class ModelFormat(str, Enum):
"""Storage format of model."""
Diffusers = "diffusers"
Checkpoint = "checkpoint"
Lycoris = "lycoris"
Onnx = "onnx"
Olive = "olive"
EmbeddingFile = "embedding_file"
EmbeddingFolder = "embedding_folder"
class SchedulerPredictionType(str, Enum):
"""Scheduler prediction type."""
Epsilon = "epsilon"
VPrediction = "v_prediction"
Sample = "sample"
class ModelConfigBase(BaseModel):
"""Base class for model configuration information."""
path: str
name: str
base_model: BaseModelType
model_type: ModelType
model_format: ModelFormat
id: Optional[str] = Field(None) # this may get added by the store
description: Optional[str] = Field(None)
author: Optional[str] = Field(description="Model author")
thumbnail_url: Optional[str] = Field(description="URL of thumbnail image")
license_url: Optional[str] = Field(description="URL of license")
source_url: Optional[str] = Field(description="Model download source")
tags: Optional[List[str]] = Field(description="Descriptive tags") # Set would be better, but not JSON serializable
class Config:
"""Pydantic configuration hint."""
use_enum_values = True
extra = Extra.forbid
validate_assignment = True
@pydantic.validator("tags", pre=True)
@classmethod
def _fix_tags(cls, v):
if isinstance(v, ListConfig): # to support yaml backend
v = list(v)
return v
class CheckpointConfig(ModelConfigBase):
"""Model config for checkpoint-style models."""
model_format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
config: str = Field(description="path to the checkpoint model config file")
class DiffusersConfig(ModelConfigBase):
"""Model config for diffusers-style models."""
model_format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class LoRAConfig(ModelConfigBase):
"""Model config for LoRA/Lycoris models."""
model_format: Literal[ModelFormat.Lycoris, ModelFormat.Diffusers]
class VaeCheckpointConfig(ModelConfigBase):
"""Model config for standalone VAE models."""
model_format: Literal[ModelFormat.Checkpoint] = ModelFormat.Checkpoint
class VaeDiffusersConfig(ModelConfigBase):
"""Model config for standalone VAE models (diffusers version)."""
model_format: Literal[ModelFormat.Diffusers] = ModelFormat.Diffusers
class TextualInversionConfig(ModelConfigBase):
"""Model config for textual inversion embeddings."""
model_format: Literal[ModelFormat.EmbeddingFile, ModelFormat.EmbeddingFolder]
class MainConfig(ModelConfigBase):
"""Model config for main models."""
vae: Optional[str] = Field(None)
model_variant: ModelVariantType = ModelVariantType.Normal
class MainCheckpointConfig(CheckpointConfig, MainConfig):
"""Model config for main checkpoint models."""
class MainDiffusersConfig(DiffusersConfig, MainConfig):
"""Model config for main diffusers models."""
class ONNXSD1Config(MainConfig):
"""Model config for ONNX format models based on sd-1."""
model_format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
class ONNXSD2Config(MainConfig):
"""Model config for ONNX format models based on sd-2."""
model_format: Literal[ModelFormat.Onnx, ModelFormat.Olive]
# No yaml config file for ONNX, so these are part of config
prediction_type: SchedulerPredictionType
upcast_attention: bool
class ModelConfigFactory(object):
"""Class for parsing config dicts into StableDiffusion Config obects."""
_class_map: dict = {
ModelFormat.Checkpoint: {
ModelType.Main: MainCheckpointConfig,
ModelType.Vae: VaeCheckpointConfig,
},
ModelFormat.Diffusers: {
ModelType.Main: MainDiffusersConfig,
ModelType.Lora: LoRAConfig,
ModelType.Vae: VaeDiffusersConfig,
},
ModelFormat.Lycoris: {
ModelType.Lora: LoRAConfig,
},
ModelFormat.Onnx: {
ModelType.ONNX: {
BaseModelType.StableDiffusion1: ONNXSD1Config,
BaseModelType.StableDiffusion2: ONNXSD2Config,
},
},
ModelFormat.Olive: {
ModelType.ONNX: {
BaseModelType.StableDiffusion1: ONNXSD1Config,
BaseModelType.StableDiffusion2: ONNXSD2Config,
},
},
ModelFormat.EmbeddingFile: {
ModelType.TextualInversion: TextualInversionConfig,
},
ModelFormat.EmbeddingFolder: {
ModelType.TextualInversion: TextualInversionConfig,
},
}
@classmethod
def make_config(
cls,
model_data: Union[dict, ModelConfigBase],
dest_class: Optional[Type] = None,
) -> Union[
MainCheckpointConfig,
MainDiffusersConfig,
LoRAConfig,
TextualInversionConfig,
ONNXSD1Config,
ONNXSD2Config,
]:
"""
Return the appropriate config object from raw dict values.
:param model_data: A raw dict corresponding the obect fields to be
parsed into a ModelConfigBase obect (or descendent), or a ModelConfigBase
object, which will be passed through unchanged.
:param dest_class: The config class to be returned. If not provided, will
be selected automatically.
"""
if isinstance(model_data, ModelConfigBase):
return model_data
try:
model_format = model_data.get("model_format")
model_type = model_data.get("model_type")
model_base = model_data.get("base_model")
class_to_return = dest_class or cls._class_map[model_format][model_type]
if isinstance(class_to_return, dict): # additional level allowed
class_to_return = class_to_return[model_base]
return class_to_return.parse_obj(model_data)
except KeyError as exc:
raise InvalidModelConfigException(
f"Unknown combination of model_format '{model_format}' and model_type '{model_type}'"
) from exc
except ValidationError as exc:
raise InvalidModelConfigException(f"Invalid model configuration passed: {str(exc)}") from exc