InvokeAI/invokeai/backend/ip_adapter/ip_attention_weights.py

53 lines
2.1 KiB
Python

import torch
class IPAttentionProcessorWeights(torch.nn.Module):
"""The IP-Adapter weights for a single attention processor.
This class is a torch.nn.Module sub-class to facilitate loading from a state_dict. It does not have a forward(...)
method.
"""
def __init__(self, in_dim: int, out_dim: int, scale: float = 1.0):
super().__init__()
self.scale = scale
self.to_k_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
self.to_v_ip = torch.nn.Linear(in_dim, out_dim, bias=False)
class IPAttentionWeights(torch.nn.Module):
"""A collection of all the `IPAttentionProcessorWeights` objects for an IP-Adapter model.
This class is a torch.nn.Module sub-class so that it inherits the `.to(...)` functionality. It does not have a
forward(...) method.
"""
def __init__(self, weights: torch.nn.ModuleDict):
super().__init__()
self._weights = weights
def set_scale(self, scale: float):
"""Set the scale (a.k.a. 'weight') for all of the `IPAttentionProcessorWeights` in this collection."""
for w in self._weights.values():
w.scale = scale
def get_attention_processor_weights(self, idx: int) -> IPAttentionProcessorWeights:
"""Get the `IPAttentionProcessorWeights` for the idx'th attention processor."""
# Cast to int first, because we expect the key to represent an int. Then cast back to str, because
# `torch.nn.ModuleDict` only supports str keys.
return self._weights[str(int(idx))]
@classmethod
def from_state_dict(cls, state_dict: dict[str, torch.Tensor]):
attn_proc_weights: dict[str, IPAttentionProcessorWeights] = {}
for tensor_name, tensor in state_dict.items():
if "to_k_ip.weight" in tensor_name:
index = str(int(tensor_name.split(".")[0]))
attn_proc_weights[index] = IPAttentionProcessorWeights(tensor.shape[1], tensor.shape[0])
attn_proc_weights_module = torch.nn.ModuleDict(attn_proc_weights)
attn_proc_weights_module.load_state_dict(state_dict)
return cls(attn_proc_weights_module)