mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
958d7650dd
- img2img confirmed working with all samplers - inpainting working on ddim & plms. Changes to k-diffusion module seem to be needed for inpainting support. - switched k-diffuser noise schedule to original karras schedule, which reduces the step number needed for good results
67 lines
2.4 KiB
Python
67 lines
2.4 KiB
Python
'''
|
|
ldm.dream.generator.img2img descends from ldm.dream.generator
|
|
'''
|
|
|
|
import torch
|
|
import numpy as np
|
|
from ldm.dream.devices import choose_autocast
|
|
from ldm.dream.generator.base import Generator
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
class Img2Img(Generator):
|
|
def __init__(self, model, precision):
|
|
super().__init__(model, precision)
|
|
self.init_latent = None # by get_noise()
|
|
|
|
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
|
|
conditioning,init_image,strength,step_callback=None,**kwargs):
|
|
"""
|
|
Returns a function returning an image derived from the prompt and the initial image
|
|
Return value depends on the seed at the time you call it.
|
|
"""
|
|
|
|
sampler.make_schedule(
|
|
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
|
|
)
|
|
|
|
scope = choose_autocast(self.precision)
|
|
with scope(self.model.device.type):
|
|
self.init_latent = self.model.get_first_stage_encoding(
|
|
self.model.encode_first_stage(init_image)
|
|
) # move to latent space
|
|
|
|
t_enc = int(strength * steps)
|
|
uc, c = conditioning
|
|
|
|
def make_image(x_T):
|
|
# encode (scaled latent)
|
|
z_enc = sampler.stochastic_encode(
|
|
self.init_latent,
|
|
torch.tensor([t_enc]).to(self.model.device),
|
|
noise=x_T
|
|
)
|
|
samples,_ = sampler.sample(
|
|
batch_size = 1,
|
|
S = t_enc,
|
|
shape = z_enc.shape[1:],
|
|
x_T = z_enc,
|
|
conditioning = c,
|
|
unconditional_guidance_scale = cfg_scale,
|
|
unconditional_conditioning = uc,
|
|
eta = ddim_eta,
|
|
img_callback = step_callback,
|
|
verbose = False,
|
|
)
|
|
return self.sample_to_image(samples)
|
|
|
|
return make_image
|
|
|
|
def get_noise(self,width,height):
|
|
device = self.model.device
|
|
init_latent = self.init_latent
|
|
assert init_latent is not None,'call to get_noise() when init_latent not set'
|
|
if device.type == 'mps':
|
|
return torch.randn_like(init_latent, device='cpu').to(device)
|
|
else:
|
|
return torch.randn_like(init_latent, device=device)
|