InvokeAI/invokeai/backend/model_manager/probe.py
psychedelicious 982076d7d7 feat(mm): add hashing algos to ModelHash
- Some algos are slow, so it is now just called ModelHash
- Added all hashlib algos, plus BLAKE3 and the fast (but incorrect) SHA1 algo
2024-03-03 14:32:14 +11:00

729 lines
30 KiB
Python

import json
import re
from pathlib import Path
from typing import Any, Dict, Literal, Optional, Union
import safetensors.torch
import torch
from picklescan.scanner import scan_file_path
import invokeai.backend.util.logging as logger
from invokeai.backend.util.util import SilenceWarnings
from .config import (
AnyModelConfig,
BaseModelType,
InvalidModelConfigException,
ModelConfigFactory,
ModelFormat,
ModelRepoVariant,
ModelType,
ModelVariantType,
SchedulerPredictionType,
)
from .hash import ModelHash
from .util.model_util import lora_token_vector_length, read_checkpoint_meta
CkptType = Dict[str, Any]
LEGACY_CONFIGS: Dict[BaseModelType, Dict[ModelVariantType, Union[str, Dict[SchedulerPredictionType, str]]]] = {
BaseModelType.StableDiffusion1: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v1-inference.yaml",
SchedulerPredictionType.VPrediction: "v1-inference-v.yaml",
},
ModelVariantType.Inpaint: "v1-inpainting-inference.yaml",
ModelVariantType.Depth: "v2-midas-inference.yaml",
},
BaseModelType.StableDiffusion2: {
ModelVariantType.Normal: {
SchedulerPredictionType.Epsilon: "v2-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inference-v.yaml",
},
ModelVariantType.Inpaint: {
SchedulerPredictionType.Epsilon: "v2-inpainting-inference.yaml",
SchedulerPredictionType.VPrediction: "v2-inpainting-inference-v.yaml",
},
},
BaseModelType.StableDiffusionXL: {
ModelVariantType.Normal: "sd_xl_base.yaml",
},
BaseModelType.StableDiffusionXLRefiner: {
ModelVariantType.Normal: "sd_xl_refiner.yaml",
},
}
class ProbeBase(object):
"""Base class for probes."""
def __init__(self, model_path: Path):
self.model_path = model_path
def get_base_type(self) -> BaseModelType:
"""Get model base type."""
raise NotImplementedError
def get_format(self) -> ModelFormat:
"""Get model file format."""
raise NotImplementedError
def get_variant_type(self) -> Optional[ModelVariantType]:
"""Get model variant type."""
return None
def get_scheduler_prediction_type(self) -> Optional[SchedulerPredictionType]:
"""Get model scheduler prediction type."""
return None
def get_image_encoder_model_id(self) -> Optional[str]:
"""Get image encoder (IP adapters only)."""
return None
class ModelProbe(object):
PROBES: Dict[str, Dict[ModelType, type[ProbeBase]]] = {
"diffusers": {},
"checkpoint": {},
"onnx": {},
}
CLASS2TYPE = {
"StableDiffusionPipeline": ModelType.Main,
"StableDiffusionInpaintPipeline": ModelType.Main,
"StableDiffusionXLPipeline": ModelType.Main,
"StableDiffusionXLImg2ImgPipeline": ModelType.Main,
"StableDiffusionXLInpaintPipeline": ModelType.Main,
"LatentConsistencyModelPipeline": ModelType.Main,
"AutoencoderKL": ModelType.Vae,
"AutoencoderTiny": ModelType.Vae,
"ControlNetModel": ModelType.ControlNet,
"CLIPVisionModelWithProjection": ModelType.CLIPVision,
"T2IAdapter": ModelType.T2IAdapter,
}
@classmethod
def register_probe(
cls, format: Literal["diffusers", "checkpoint", "onnx"], model_type: ModelType, probe_class: type[ProbeBase]
) -> None:
cls.PROBES[format][model_type] = probe_class
@classmethod
def heuristic_probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
return cls.probe(model_path, fields)
@classmethod
def probe(
cls,
model_path: Path,
fields: Optional[Dict[str, Any]] = None,
) -> AnyModelConfig:
"""
Probe the model at model_path and return its configuration record.
:param model_path: Path to the model file (checkpoint) or directory (diffusers).
:param fields: An optional dictionary that can be used to override probed
fields. Typically used for fields that don't probe well, such as prediction_type.
Returns: The appropriate model configuration derived from ModelConfigBase.
"""
if fields is None:
fields = {}
format_type = ModelFormat.Diffusers if model_path.is_dir() else ModelFormat.Checkpoint
model_info = None
model_type = None
if format_type == "diffusers":
model_type = cls.get_model_type_from_folder(model_path)
else:
model_type = cls.get_model_type_from_checkpoint(model_path)
format_type = ModelFormat.Onnx if model_type == ModelType.ONNX else format_type
probe_class = cls.PROBES[format_type].get(model_type)
if not probe_class:
raise InvalidModelConfigException(f"Unhandled combination of {format_type} and {model_type}")
hash = ModelHash.hash(model_path)
probe = probe_class(model_path)
fields["path"] = model_path.as_posix()
fields["type"] = fields.get("type") or model_type
fields["base"] = fields.get("base") or probe.get_base_type()
fields["variant"] = fields.get("variant") or probe.get_variant_type()
fields["prediction_type"] = fields.get("prediction_type") or probe.get_scheduler_prediction_type()
fields["image_encoder_model_id"] = fields.get("image_encoder_model_id") or probe.get_image_encoder_model_id()
fields["name"] = fields.get("name") or cls.get_model_name(model_path)
fields["description"] = (
fields.get("description") or f"{fields['base'].value} {fields['type'].value} model {fields['name']}"
)
fields["format"] = fields.get("format") or probe.get_format()
fields["original_hash"] = fields.get("original_hash") or hash
fields["current_hash"] = fields.get("current_hash") or hash
if format_type == ModelFormat.Diffusers and hasattr(probe, "get_repo_variant"):
fields["repo_variant"] = fields.get("repo_variant") or probe.get_repo_variant()
# additional fields needed for main and controlnet models
if fields["type"] in [ModelType.Main, ModelType.ControlNet] and fields["format"] == ModelFormat.Checkpoint:
fields["config"] = cls._get_checkpoint_config_path(
model_path,
model_type=fields["type"],
base_type=fields["base"],
variant_type=fields["variant"],
prediction_type=fields["prediction_type"],
).as_posix()
# additional fields needed for main non-checkpoint models
elif fields["type"] == ModelType.Main and fields["format"] in [
ModelFormat.Onnx,
ModelFormat.Olive,
ModelFormat.Diffusers,
]:
fields["upcast_attention"] = fields.get("upcast_attention") or (
fields["base"] == BaseModelType.StableDiffusion2
and fields["prediction_type"] == SchedulerPredictionType.VPrediction
)
model_info = ModelConfigFactory.make_config(fields) # , key=fields.get("key", None))
return model_info
@classmethod
def get_model_name(cls, model_path: Path) -> str:
if model_path.suffix in {".safetensors", ".bin", ".pt", ".ckpt"}:
return model_path.stem
else:
return model_path.name
@classmethod
def get_model_type_from_checkpoint(cls, model_path: Path, checkpoint: Optional[CkptType] = None) -> ModelType:
if model_path.suffix not in (".bin", ".pt", ".ckpt", ".safetensors", ".pth"):
raise InvalidModelConfigException(f"{model_path}: unrecognized suffix")
if model_path.name == "learned_embeds.bin":
return ModelType.TextualInversion
ckpt = checkpoint if checkpoint else read_checkpoint_meta(model_path, scan=True)
ckpt = ckpt.get("state_dict", ckpt)
for key in ckpt.keys():
if any(key.startswith(v) for v in {"cond_stage_model.", "first_stage_model.", "model.diffusion_model."}):
return ModelType.Main
elif any(key.startswith(v) for v in {"encoder.conv_in", "decoder.conv_in"}):
return ModelType.Vae
elif any(key.startswith(v) for v in {"lora_te_", "lora_unet_"}):
return ModelType.Lora
elif any(key.endswith(v) for v in {"to_k_lora.up.weight", "to_q_lora.down.weight"}):
return ModelType.Lora
elif any(key.startswith(v) for v in {"control_model", "input_blocks"}):
return ModelType.ControlNet
elif key in {"emb_params", "string_to_param"}:
return ModelType.TextualInversion
else:
# diffusers-ti
if len(ckpt) < 10 and all(isinstance(v, torch.Tensor) for v in ckpt.values()):
return ModelType.TextualInversion
raise InvalidModelConfigException(f"Unable to determine model type for {model_path}")
@classmethod
def get_model_type_from_folder(cls, folder_path: Path) -> ModelType:
"""Get the model type of a hugging-face style folder."""
class_name = None
error_hint = None
for suffix in ["bin", "safetensors"]:
if (folder_path / f"learned_embeds.{suffix}").exists():
return ModelType.TextualInversion
if (folder_path / f"pytorch_lora_weights.{suffix}").exists():
return ModelType.Lora
if (folder_path / "unet/model.onnx").exists():
return ModelType.ONNX
if (folder_path / "image_encoder.txt").exists():
return ModelType.IPAdapter
i = folder_path / "model_index.json"
c = folder_path / "config.json"
config_path = i if i.exists() else c if c.exists() else None
if config_path:
with open(config_path, "r") as file:
conf = json.load(file)
if "_class_name" in conf:
class_name = conf["_class_name"]
elif "architectures" in conf:
class_name = conf["architectures"][0]
else:
class_name = None
else:
error_hint = f"No model_index.json or config.json found in {folder_path}."
if class_name and (type := cls.CLASS2TYPE.get(class_name)):
return type
else:
error_hint = f"class {class_name} is not one of the supported classes [{', '.join(cls.CLASS2TYPE.keys())}]"
# give up
raise InvalidModelConfigException(
f"Unable to determine model type for {folder_path}" + (f"; {error_hint}" if error_hint else "")
)
@classmethod
def _get_checkpoint_config_path(
cls,
model_path: Path,
model_type: ModelType,
base_type: BaseModelType,
variant_type: ModelVariantType,
prediction_type: SchedulerPredictionType,
) -> Path:
# look for a YAML file adjacent to the model file first
possible_conf = model_path.with_suffix(".yaml")
if possible_conf.exists():
return possible_conf.absolute()
if model_type == ModelType.Main:
config_file = LEGACY_CONFIGS[base_type][variant_type]
if isinstance(config_file, dict): # need another tier for sd-2.x models
config_file = config_file[prediction_type]
elif model_type == ModelType.ControlNet:
config_file = (
"../controlnet/cldm_v15.yaml" if base_type == BaseModelType("sd-1") else "../controlnet/cldm_v21.yaml"
)
else:
raise InvalidModelConfigException(
f"{model_path}: Unrecognized combination of model_type={model_type}, base_type={base_type}"
)
assert isinstance(config_file, str)
return Path(config_file)
@classmethod
def _scan_and_load_checkpoint(cls, model_path: Path) -> CkptType:
with SilenceWarnings():
if model_path.suffix.endswith((".ckpt", ".pt", ".bin")):
cls._scan_model(model_path.name, model_path)
model = torch.load(model_path)
assert isinstance(model, dict)
return model
else:
return safetensors.torch.load_file(model_path)
@classmethod
def _scan_model(cls, model_name: str, checkpoint: Path) -> None:
"""
Apply picklescanner to the indicated checkpoint and issue a warning
and option to exit if an infected file is identified.
"""
# scan model
scan_result = scan_file_path(checkpoint)
if scan_result.infected_files != 0:
raise Exception("The model {model_name} is potentially infected by malware. Aborting import.")
# ##################################################3
# Checkpoint probing
# ##################################################3
class CheckpointProbeBase(ProbeBase):
def __init__(self, model_path: Path):
super().__init__(model_path)
self.checkpoint = ModelProbe._scan_and_load_checkpoint(model_path)
def get_format(self) -> ModelFormat:
return ModelFormat("checkpoint")
def get_variant_type(self) -> ModelVariantType:
model_type = ModelProbe.get_model_type_from_checkpoint(self.model_path, self.checkpoint)
if model_type != ModelType.Main:
return ModelVariantType.Normal
state_dict = self.checkpoint.get("state_dict") or self.checkpoint
in_channels = state_dict["model.diffusion_model.input_blocks.0.0.weight"].shape[1]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
else:
raise InvalidModelConfigException(
f"Cannot determine variant type (in_channels={in_channels}) at {self.model_path}"
)
class PipelineCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
key_name = "model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 2048:
return BaseModelType.StableDiffusionXL
elif key_name in state_dict and state_dict[key_name].shape[-1] == 1280:
return BaseModelType.StableDiffusionXLRefiner
else:
raise InvalidModelConfigException("Cannot determine base type")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
"""Return model prediction type."""
type = self.get_base_type()
if type == BaseModelType.StableDiffusion2:
checkpoint = self.checkpoint
state_dict = self.checkpoint.get("state_dict") or checkpoint
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight"
if key_name in state_dict and state_dict[key_name].shape[-1] == 1024:
if "global_step" in checkpoint:
if checkpoint["global_step"] == 220000:
return SchedulerPredictionType.Epsilon
elif checkpoint["global_step"] == 110000:
return SchedulerPredictionType.VPrediction
return SchedulerPredictionType.VPrediction # a guess for sd2 ckpts
elif type == BaseModelType.StableDiffusion1:
return SchedulerPredictionType.Epsilon # a reasonable guess for sd1 ckpts
else:
return SchedulerPredictionType.Epsilon
class VaeCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
# I can't find any standalone 2.X VAEs to test with!
return BaseModelType.StableDiffusion1
class LoRACheckpointProbe(CheckpointProbeBase):
"""Class for LoRA checkpoints."""
def get_format(self) -> ModelFormat:
return ModelFormat("lycoris")
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
token_vector_length = lora_token_vector_length(checkpoint)
if token_vector_length == 768:
return BaseModelType.StableDiffusion1
elif token_vector_length == 1024:
return BaseModelType.StableDiffusion2
elif token_vector_length == 1280:
return BaseModelType.StableDiffusionXL # recognizes format at https://civitai.com/models/224641
elif token_vector_length == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown LoRA type: {self.model_path}")
class TextualInversionCheckpointProbe(CheckpointProbeBase):
"""Class for probing embeddings."""
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFile
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
if "string_to_token" in checkpoint:
token_dim = list(checkpoint["string_to_param"].values())[0].shape[-1]
elif "emb_params" in checkpoint:
token_dim = checkpoint["emb_params"].shape[-1]
elif "clip_g" in checkpoint:
token_dim = checkpoint["clip_g"].shape[-1]
else:
token_dim = list(checkpoint.values())[0].shape[0]
if token_dim == 768:
return BaseModelType.StableDiffusion1
elif token_dim == 1024:
return BaseModelType.StableDiffusion2
elif token_dim == 1280:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"{self.model_path}: Could not determine base type")
class ControlNetCheckpointProbe(CheckpointProbeBase):
"""Class for probing controlnets."""
def get_base_type(self) -> BaseModelType:
checkpoint = self.checkpoint
for key_name in (
"control_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
"input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight",
):
if key_name not in checkpoint:
continue
if checkpoint[key_name].shape[-1] == 768:
return BaseModelType.StableDiffusion1
elif checkpoint[key_name].shape[-1] == 1024:
return BaseModelType.StableDiffusion2
raise InvalidModelConfigException("{self.model_path}: Unable to determine base type")
class IPAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class CLIPVisionCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
class T2IAdapterCheckpointProbe(CheckpointProbeBase):
def get_base_type(self) -> BaseModelType:
raise NotImplementedError()
########################################################
# classes for probing folders
#######################################################
class FolderProbeBase(ProbeBase):
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
def get_format(self) -> ModelFormat:
return ModelFormat("diffusers")
def get_repo_variant(self) -> ModelRepoVariant:
# get all files ending in .bin or .safetensors
weight_files = list(self.model_path.glob("**/*.safetensors"))
weight_files.extend(list(self.model_path.glob("**/*.bin")))
for x in weight_files:
if ".fp16" in x.suffixes:
return ModelRepoVariant.FP16
if "openvino_model" in x.name:
return ModelRepoVariant.OPENVINO
if "flax_model" in x.name:
return ModelRepoVariant.FLAX
if x.suffix == ".onnx":
return ModelRepoVariant.ONNX
return ModelRepoVariant.DEFAULT
class PipelineFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
with open(self.model_path / "unet" / "config.json", "r") as file:
unet_conf = json.load(file)
if unet_conf["cross_attention_dim"] == 768:
return BaseModelType.StableDiffusion1
elif unet_conf["cross_attention_dim"] == 1024:
return BaseModelType.StableDiffusion2
elif unet_conf["cross_attention_dim"] == 1280:
return BaseModelType.StableDiffusionXLRefiner
elif unet_conf["cross_attention_dim"] == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(f"Unknown base model for {self.model_path}")
def get_scheduler_prediction_type(self) -> SchedulerPredictionType:
with open(self.model_path / "scheduler" / "scheduler_config.json", "r") as file:
scheduler_conf = json.load(file)
if scheduler_conf.get("prediction_type", "epsilon") == "v_prediction":
return SchedulerPredictionType.VPrediction
elif scheduler_conf.get("prediction_type", "epsilon") == "epsilon":
return SchedulerPredictionType.Epsilon
else:
raise InvalidModelConfigException("Unknown scheduler prediction type: {scheduler_conf['prediction_type']}")
def get_variant_type(self) -> ModelVariantType:
# This only works for pipelines! Any kind of
# exception results in our returning the
# "normal" variant type
try:
config_file = self.model_path / "unet" / "config.json"
with open(config_file, "r") as file:
conf = json.load(file)
in_channels = conf["in_channels"]
if in_channels == 9:
return ModelVariantType.Inpaint
elif in_channels == 5:
return ModelVariantType.Depth
elif in_channels == 4:
return ModelVariantType.Normal
except Exception:
pass
return ModelVariantType.Normal
class VaeFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
if self._config_looks_like_sdxl():
return BaseModelType.StableDiffusionXL
elif self._name_looks_like_sdxl():
# but SD and SDXL VAE are the same shape (3-channel RGB to 4-channel float scaled down
# by a factor of 8), we can't necessarily tell them apart by config hyperparameters.
return BaseModelType.StableDiffusionXL
else:
return BaseModelType.StableDiffusion1
def _config_looks_like_sdxl(self) -> bool:
# config values that distinguish Stability's SD 1.x VAE from their SDXL VAE.
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
return config.get("scaling_factor", 0) == 0.13025 and config.get("sample_size") in [512, 1024]
def _name_looks_like_sdxl(self) -> bool:
return bool(re.search(r"xl\b", self._guess_name(), re.IGNORECASE))
def _guess_name(self) -> str:
name = self.model_path.name
if name == "vae":
name = self.model_path.parent.name
return name
class TextualInversionFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat.EmbeddingFolder
def get_base_type(self) -> BaseModelType:
path = self.model_path / "learned_embeds.bin"
if not path.exists():
raise InvalidModelConfigException(
f"{self.model_path.as_posix()} does not contain expected 'learned_embeds.bin' file"
)
return TextualInversionCheckpointProbe(path).get_base_type()
class ONNXFolderProbe(PipelineFolderProbe):
def get_base_type(self) -> BaseModelType:
# Due to the way the installer is set up, the configuration file for safetensors
# will come along for the ride if both the onnx and safetensors forms
# share the same directory. We take advantage of this here.
if (self.model_path / "unet" / "config.json").exists():
return super().get_base_type()
else:
logger.warning('Base type probing is not implemented for ONNX models. Assuming "sd-1"')
return BaseModelType.StableDiffusion1
def get_format(self) -> ModelFormat:
return ModelFormat("onnx")
def get_variant_type(self) -> ModelVariantType:
return ModelVariantType.Normal
class ControlNetFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
# no obvious way to distinguish between sd2-base and sd2-768
dimension = config["cross_attention_dim"]
base_model = (
BaseModelType.StableDiffusion1
if dimension == 768
else (
BaseModelType.StableDiffusion2
if dimension == 1024
else BaseModelType.StableDiffusionXL
if dimension == 2048
else None
)
)
if not base_model:
raise InvalidModelConfigException(f"Unable to determine model base for {self.model_path}")
return base_model
class LoRAFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
model_file = None
for suffix in ["safetensors", "bin"]:
base_file = self.model_path / f"pytorch_lora_weights.{suffix}"
if base_file.exists():
model_file = base_file
break
if not model_file:
raise InvalidModelConfigException("Unknown LoRA format encountered")
return LoRACheckpointProbe(model_file).get_base_type()
class IPAdapterFolderProbe(FolderProbeBase):
def get_format(self) -> ModelFormat:
return ModelFormat.InvokeAI
def get_base_type(self) -> BaseModelType:
model_file = self.model_path / "ip_adapter.bin"
if not model_file.exists():
raise InvalidModelConfigException("Unknown IP-Adapter model format.")
state_dict = torch.load(model_file, map_location="cpu")
cross_attention_dim = state_dict["ip_adapter"]["1.to_k_ip.weight"].shape[-1]
if cross_attention_dim == 768:
return BaseModelType.StableDiffusion1
elif cross_attention_dim == 1024:
return BaseModelType.StableDiffusion2
elif cross_attention_dim == 2048:
return BaseModelType.StableDiffusionXL
else:
raise InvalidModelConfigException(
f"IP-Adapter had unexpected cross-attention dimension: {cross_attention_dim}."
)
def get_image_encoder_model_id(self) -> Optional[str]:
encoder_id_path = self.model_path / "image_encoder.txt"
if not encoder_id_path.exists():
return None
with open(encoder_id_path, "r") as f:
image_encoder_model = f.readline().strip()
return image_encoder_model
class CLIPVisionFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
return BaseModelType.Any
class T2IAdapterFolderProbe(FolderProbeBase):
def get_base_type(self) -> BaseModelType:
config_file = self.model_path / "config.json"
if not config_file.exists():
raise InvalidModelConfigException(f"Cannot determine base type for {self.model_path}")
with open(config_file, "r") as file:
config = json.load(file)
adapter_type = config.get("adapter_type", None)
if adapter_type == "full_adapter_xl":
return BaseModelType.StableDiffusionXL
elif adapter_type == "full_adapter" or "light_adapter":
# I haven't seen any T2I adapter models for SD2, so assume that this is an SD1 adapter.
return BaseModelType.StableDiffusion1
else:
raise InvalidModelConfigException(
f"Unable to determine base model for '{self.model_path}' (adapter_type = {adapter_type})."
)
############## register probe classes ######
ModelProbe.register_probe("diffusers", ModelType.Main, PipelineFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Vae, VaeFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.Lora, LoRAFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.TextualInversion, TextualInversionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.ControlNet, ControlNetFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.IPAdapter, IPAdapterFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.CLIPVision, CLIPVisionFolderProbe)
ModelProbe.register_probe("diffusers", ModelType.T2IAdapter, T2IAdapterFolderProbe)
ModelProbe.register_probe("checkpoint", ModelType.Main, PipelineCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Vae, VaeCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.Lora, LoRACheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.TextualInversion, TextualInversionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.ControlNet, ControlNetCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.IPAdapter, IPAdapterCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.CLIPVision, CLIPVisionCheckpointProbe)
ModelProbe.register_probe("checkpoint", ModelType.T2IAdapter, T2IAdapterCheckpointProbe)
ModelProbe.register_probe("onnx", ModelType.ONNX, ONNXFolderProbe)