InvokeAI/ldm/dream/generator/img2img.py
Travco dbf2c63c90
Add Embiggen automation to upscale-cut-img2img-stitch and achieve high res without extra VRAM (#437)
* Add Embiggen automation

* Make embiggen_tiles masking more intelligent and count from one (at least for the user), rewrite sections of Embiggen README, fix various typos throughout README

* drop duplicate log message
2022-09-12 15:37:26 -04:00

73 lines
2.5 KiB
Python

'''
ldm.dream.generator.img2img descends from ldm.dream.generator
'''
import torch
import numpy as np
from ldm.dream.devices import choose_autocast_device
from ldm.dream.generator.base import Generator
from ldm.models.diffusion.ddim import DDIMSampler
class Img2Img(Generator):
def __init__(self,model):
super().__init__(model)
self.init_latent = None # by get_noise()
@torch.no_grad()
def get_make_image(self,prompt,sampler,steps,cfg_scale,ddim_eta,
conditioning,init_image,strength,step_callback=None,**kwargs):
"""
Returns a function returning an image derived from the prompt and the initial image
Return value depends on the seed at the time you call it.
"""
# PLMS sampler not supported yet, so ignore previous sampler
if not isinstance(sampler,DDIMSampler):
print(
f">> sampler '{sampler.__class__.__name__}' is not yet supported. Using DDIM sampler"
)
sampler = DDIMSampler(self.model, device=self.model.device)
sampler.make_schedule(
ddim_num_steps=steps, ddim_eta=ddim_eta, verbose=False
)
device_type,scope = choose_autocast_device(self.model.device)
with scope(device_type):
self.init_latent = self.model.get_first_stage_encoding(
self.model.encode_first_stage(init_image)
) # move to latent space
t_enc = int(strength * steps)
uc, c = conditioning
@torch.no_grad()
def make_image(x_T):
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
self.init_latent,
torch.tensor([t_enc]).to(self.model.device),
noise=x_T
)
# decode it
samples = sampler.decode(
z_enc,
c,
t_enc,
img_callback = step_callback,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning=uc,
)
return self.sample_to_image(samples)
return make_image
def get_noise(self,width,height):
device = self.model.device
init_latent = self.init_latent
assert init_latent is not None,'call to get_noise() when init_latent not set'
if device.type == 'mps':
return torch.randn_like(init_latent, device='cpu').to(device)
else:
return torch.randn_like(init_latent, device=device)