mirror of
https://github.com/invoke-ai/InvokeAI
synced 2024-08-30 20:32:17 +00:00
9ad4c03277
1) Downgrade numpy to avoid dependency conflict with numba 2) Move all non ldm/invoke files into `invokeai`. This includes assets, backend, frontend, and configs. 3) Fix up way that the backend finds the frontend and the generator finds the NSFW caution.png icon.
111 lines
2.6 KiB
YAML
111 lines
2.6 KiB
YAML
model:
|
|
base_learning_rate: 5.0e-03
|
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
|
params:
|
|
linear_start: 0.00085
|
|
linear_end: 0.0120
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: image
|
|
cond_stage_key: caption
|
|
image_size: 64
|
|
channels: 4
|
|
cond_stage_trainable: true # Note: different from the one we trained before
|
|
conditioning_key: crossattn
|
|
monitor: val/loss_simple_ema
|
|
scale_factor: 0.18215
|
|
use_ema: False
|
|
embedding_reg_weight: 0.0
|
|
|
|
personalization_config:
|
|
target: ldm.modules.embedding_manager.EmbeddingManager
|
|
params:
|
|
placeholder_strings: ["*"]
|
|
initializer_words: ["sculpture"]
|
|
per_image_tokens: false
|
|
num_vectors_per_token: 1
|
|
progressive_words: False
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
image_size: 32 # unused
|
|
in_channels: 4
|
|
out_channels: 4
|
|
model_channels: 320
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
num_res_blocks: 2
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
|
num_heads: 8
|
|
use_spatial_transformer: True
|
|
transformer_depth: 1
|
|
context_dim: 768
|
|
use_checkpoint: True
|
|
legacy: False
|
|
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
params:
|
|
embed_dim: 4
|
|
monitor: val/rec_loss
|
|
ddconfig:
|
|
double_z: true
|
|
z_channels: 4
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: []
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
|
|
cond_stage_config:
|
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
|
|
data:
|
|
target: main.DataModuleFromConfig
|
|
params:
|
|
batch_size: 1
|
|
num_workers: 2
|
|
wrap: false
|
|
train:
|
|
target: ldm.data.personalized.PersonalizedBase
|
|
params:
|
|
size: 512
|
|
set: train
|
|
per_image_tokens: false
|
|
repeats: 100
|
|
validation:
|
|
target: ldm.data.personalized.PersonalizedBase
|
|
params:
|
|
size: 512
|
|
set: val
|
|
per_image_tokens: false
|
|
repeats: 10
|
|
|
|
lightning:
|
|
modelcheckpoint:
|
|
params:
|
|
every_n_train_steps: 500
|
|
callbacks:
|
|
image_logger:
|
|
target: main.ImageLogger
|
|
params:
|
|
batch_frequency: 500
|
|
max_images: 8
|
|
increase_log_steps: False
|
|
|
|
trainer:
|
|
benchmark: True
|
|
max_steps: 4000000
|
|
# max_steps: 4000
|
|
|